
Bush House, King's College
London, Strand Campus, 30
Aldwych, London WC2B 4BG
Telephone 020 7848 2145
Fax 020 7848 2851

Faculty of Natural and
Mathematical Sciences
Department of Engineering

7CCSMPRJ

Individual Project Submission 2019/2020

Name:

Student Number:

Degree Programme:

Project Title:

Supervisor:

Word count:

Mingcong Chen

19007740

MSc Robotics

Visual Servoing Control and Modelling
for Flexible Endoscopic Robots

Dr Hongbin Liu

10089

 I agree to the release of my project

 I do not agree to the release of my project

Signature:

Date: 21/08/2020

RELEASE OF PROJECT

Following the submission of your project, the Department would like to make it publicly
available via the library electronic resources. You will retain copyright of the project.

KING’S COLLEGE LONDON

MASTER THESIS

Visual Servoing Control and Modelling

for Flexible Endoscopic Robots

Author: Supervisor:

Mingcong CHEN Dr Hongbin LIU

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science in Robotics

in the

Department of Engineering

Faculty of Natural and Mathematical Sciences

August 21, 2020

Acknowledgments ii

Acknowledgments

I would like to express my gratitude to all those who helped me during the writing of this thesis.

My deepest gratitude goes first and foremost to Dr Hongbin Liu, my supervisor, for his constant

encouragement and guidance. He has walked me through all the stages of my final project and

my MSc study. Without his consistent and illuminating instruction, this thesis could not have

reached its present form. Furthermore, I would like to thank the other members of Dr Liu’s

workgroup, Dr Junghwan Back and Dr Guokai Zhang in particular. Dr Back was beneficial

throughout my entire work and patiently supported me. Dr Zhang arranged my project’s

schedule and provided many valuable suggestions.

I would like to thank my parents Shangyun and Mei for giving me this great opportunity to

pursue my Master’s degree and supporting me all of my life. Many thanks go as well to my

girlfriend Miaowen for motivating and supporting me every single day.

Last but not the least, thank NHS staffs, China anti-epidemic staffs and the medical staff all

over the world for the great working against coronavirus.

Abstract iii

Abstract

The flexible endoscopic robot has shown great potential in minimally invasive surgery.

Compared with conventional open surgery, The endoscopic robot will cause less pain and lower

bleeding rates which can help patients recover faster. However, the current endoscopic robot

system relies on the surgeon too much that will lead to the lack of surgeon resources and cause

danger when the surgeon is getting tired after long-duration operations. Moreover, with the

development of 5G, the discussion about the benefit of remote surgery has been revealed to the

public. Especially in today's medical situation, due to the coronavirus, the remote surgical

system becomes more and more important.

At present, there are already several soft manipulators based on cable drive that has been

developed, which allows an accurate movement and force control resulting in safety risk for

the patient. To give a more straightforward model for the robot, a helix mesh design of the

robot’s tip is investigated in this project. A cable-driven actuation system is also developed with

a Wi-Fi-based remote controller system. To realize accurate control, the soft robot in this

project is modeled by constant curvature to set up the relationship between working space, joint

space, and actuator space. Moreover, an inverse kinematics model can solve the visual servoing

task is demonstrated based on the differential Jacobian matrix and the estimated Jacobian

matrix. All the algorithms are tested in a simulated experiment, and a physical robot experiment

for target guided controlling, which shows the desired stable movement. Furthermore, the

visual servoing of the soft robot is validated using a painted target showing adequately accurate

movement and linear behavior. As an inspiration result, an external contact location estimation

algorithm is discussed by an experiment based on visual servoing.

The expected work in the future is the combination with a haptic sensor on the tip of the robot

to give a duel-feedback control and the hyper-remote control based on a 5G modular.

Abstract iv

Contents

Acknowledgements .. ii

Abstract .. iii

Contents .. iv

List of Figures .. vi

List of tables .. vii

Nomenclature ... viii

Introduction ... 1

1.1 Motivation .. 1
1.2 Objectives ... 2
1.3 Background .. 2
1.4 Project Outline .. 6

Design .. 8

2.1 System Design .. 8
2.1.1 Flexible Manipulator Design ... 9
2.1.2 Actuation .. 11
2.1.3 Communication .. 12

2.2 Image Sensing .. 14
2.3 Forward Kinematics ... 15
2.4 Inverse kinematics .. 18
2.5 Jacobian Matrix Update .. 19
2.6 Visual Servoing .. 20

Experiment and Results .. 22

3.1 Forward kinematics .. 22
3.2 Inverse kinematics .. 24
3.3 Estimated Jacobian Matrix ... 28
3.4 Visual Servoing .. 31

3.4.1 Damped Least Squares with Differential Jacobian Matrix 32
3.4.2 Damped Least Squares with Estimated Jacobian Matrix 34
3.4.3 Contact Location Estimation.. 37

Discussion.. 39

4.1 System design ... 39
4.1.1 Flexible Manipulator Design ... 39
4.1.2 Actuation .. 40
4.1.3 Communication .. 40

4.2 Image Sensing .. 41
4.3 Forward Kinematics ... 41

Abstract v

4.4 Inverse Kinematics ... 42
4.5 Visual Servoing .. 42
4.6 Applicability and further development ... 43
4.7 Conclusion .. 44

Reference ... 45

Appendix .. 49

1. Arduino .. 49
2. Simulation Code - MATLAB ... 56
3. Robot Control – Python ... 64
4. Data recording .. 92

List of Figures vi

 List of Figures

Fig.2.1 Drawing of microDART robot system .. 9
Fig.2.2 Assembled microDART robot system ... 9
Fig.2.3 Algorithm overview .. 9
Fig.2.4 microDART Manipulator bending .. 10
Fig.2.5 Disk Cutting Design .. 10
Fig.2.6 Helix Design ... 10
Fig.2.7 Stepper motor structure ... 11
Fig.2.8 Stepper motors connection .. 12
Fig.2.9 Communication logic of microDART ... 13
Fig.2.10 Catheter and target detection ... 14
Fig.2.11 Constant curvature modeled catheter .. 15
Fig.2.12 microDART end-effector working space .. 16
Fig.2.13 Coordinates in a camera system .. 21
Fig.3.1 Catheter movement procedure .. 23
Fig.3.2 Catheter trajectory under command from forward kinematics ... 23
Fig.3.3 Target and simulated trajectory by differential Jacobian matrix method 24
Fig.3.4 Inverse kinematics simulation based on differential Jacobian matrix 25
Fig.3.5 Trajectories form simulation and camera based on differential Jacobian matrix 26
Fig.3.6 Comparison between simulation result and experiment result .. 27
Fig.3.7 Target and simulated trajectory by estimated Jacobian matrix method............................. 28
Fig.3.8 Inverse kinematics simulation based on estimated Jacobian matrix 29
Fig.3.9 Trajectories form simulation and camera based on estimated Jacobian matrix 30
Fig.3.10 Comparison between simulation result and experiment result .. 31
Fig.3.11 Video frames during visual servoing based on differential Jacobian matrix 32
Fig.3.12 Trajectory based on differential Jacobian matrix tracked by camera 33
Fig.3.13 Trajectories of three different distance targets by differential Jacobian matrix 34
Fig.3.14 Video frames during visual servoing based on estimated Jacobian matrix 35
Fig.3.15 Trajectory based on estimated Jacobian matrix tracked by camera 35
Fig.3.16 Trajectories of three different distance targets by the estimated Jacobian matrix 36
Fig.3.17 Catheter with external contact ... 38

List of tables vii

 List of tables

Table 2.1 Communication protocol…………………………………………………….. 12
Table 3.1 Iteration times of three different distance targets……………………………. 33
Table 3.2 Iteration times of three different distance targets……………………………. 36

Nomenclature viii

Nomenclature

Roman Symbols

𝑙𝑙 Length of catheter

𝑘𝑘 Radius of curvature

𝐽𝐽 Jacobian matrix

𝑒𝑒 Error between catheter and target

𝑝𝑝 Catheter position

Greek Symbols

α Rotation angle

β Bending angle

𝜆𝜆 Damping constant

𝜅𝜅 Step size of iteration

Acronyms / Abbreviations

PWM Pulse width modulation

UDP User datagram protocol

TCP Transmission control protocol

OSI Open system interconnection

IP Internet protocol

LAN Local area network

FPS Frames per second

TX Transport

RX Receive

Nomenclature ix

RGB Red, Green, Blue

MBR Minimum bounding rectangle

PC Personal computer

1.1 Motivation 1

Chapter Ⅰ

Introduction

1.1 Motivation

With the development of minimally invasive surgery (MIS), there are more and more flexible

endoscopes used to monitor the interior of the human body and help the surgeon do an operation.

Compared with the conventional open surgery, the endoscopic robot will cause less pain and

less bleeding rate so that complications can be less, and patients can recover faster. For instance,

Natural Orifice Transluminal Endoscopic Surgery (NOTES) involves the intentional puncture

of the viscera of the stomach, rectum, or vagina with an endoscope to access the abdominal

cavity to perform an intra-abdominal operation [1]. In the abdominal cavity, the endoscope will

locate the targeted tissue, and the surgery will excise it. After the treatment, the endoscope will

be used to send back the incision on the organ before leaving the patients’ bodies. However,

the surgeon’s manual control is not always precise and efficient [48]. Currently, the

development of NOTES robot becomes a significant aspect in the field of medical robots. For

this project, the focus is the autonomous drive of the flexible endoscopic robot based on visual

servoing feedback control. The project gives a structural design of a flexible robot manipulator

that is actuated by a cable-driven system with stepper motors, which can give the flexible robot

better bending ability and more accurate control. A Wi-Fi-based control system will be

introduced to provide the flexible robot a remote operation function. Moreover, to realize the

visual servoing control, the soft robot manipulator will be modeled by a forward kinematics

algorithm to set up relationships between end-effector working space, joint space and actuator

space. Two different Jacobian matrix update algorithm for the inverse kinematics will be

introduced to enable the visual servoing function. Then a contact location estimation method

is inspired by the visual servoing algorithm, through which can know the obstacle position

related to the flexible manipulator. Hence, the image servoing adapted flexible endoscopic

robot system can recognize the target area and move by following the target trajectory

1.2 Objectives 2

automatically so as to increase the efficiency of endoscopic surgery and reduce the risk of

medical errors due to the doctors’ fatigue.

1.2 Objectives

micro Dexterous Assistive Robotic Therapy (microDART) is a flexible endoscopic robot

developed by HaMMeR Lab, King’s College London. This project aims to improve the design

of the microDART robot system and implement it with image-guided visual servoing. The

system was designed to improve the traditional manual surgery during the flexible endoscope

minimally invasive surgery. A new design of the flexible robot tip will be developed to improve

the robot bending ability, which can make the soft robot control easier and more accurate.

Furthermore, a remote control system will be demonstrated to set up a teleoperation system.

The image servoing control will be discussed to give an automatic surgery in an endoscopic

operation. For example, in endoscopic submucosal dissection (ESD) surgery, image

recognition can guide the robot to reach the target tissue and control the flexible instrument to

finish the dissection.

1.3 Background

The research of modern robots began in the middle of the 20th century and its technical

background in the development of computers and automation. Since the first digital electronic

computer came out in 1946, the computer has made fantastic progress and has developed in the

direction of high speed, large capacity, and low price. The urgent need for mass production

promotes the development of automation technology. One of the results is the birth of an

Industrial rigid-body robot. With the rapid development of technology, the intelligent robot has

a variety of sensors, which can fuse the information from sensors and adapt to the changing

environment effectively. Therefore, it has a robust adaptive ability, learning ability, and

autonomous function. According to a review paper [2], the robot manipulators can be classified

in there types: Rigid-link, Discrete hyper-redundant, Soft. Rigid-link robots are usually made

of metal or plastic, and each joint has an actuator, usually an electric motor. The rigid robot is

1.3 Background 3

generally easier to control, and its precision is higher than the other two types. Although the

hyper-redundant is still composed of rigid links, it achieves excellent flexibility through a large

number of partial redundant joints. It is a kind of robot that contains more degrees of freedom

than the minimum degree of freedom required to complete a specific task. Although the robot,

as mentioned above, the system contains a finite number of degrees of freedom, the soft robot

is composed of flexible structures, so it has very high flexibility and theoretically unlimited

degrees of freedom.

The bionic flexible robot has good bending performance and can change its shape flexibly and

smoothly. Its excellent bending performance can even be connected with the antenna of the

snake body, nose, octopus, and other biological organs [3] [4]. Because of its good performance,

the application prospect of the continuous bionic flexible robot is comprehensive. It can be

used to enter the site of bend pipe and earthquake disaster, providing people with people under

pressure in gravel, repairing the interior of plants, and diagnosing digestive tract diseases of

the human body. At present, researchers all over the world have carried out a series of research

on wire driven flexible robots, and have achieved some research results. Simaan has developed

a wire driven snake-like robot with flexible support, whose robot is mainly used for minimally

invasive surgery of human and animal throat [5]. Ian D. Walker and Michael W. Kerri Hannan

have developed a line driven bionic trunk robot, which uses rope and pneumatic drive [6] [7]

[8]. Chen developed a pneumatic driven continuous colonoscopy instrument [9] [10].

Robot-assisted surgery was first used in 1985 when the PUMA560 robotic arm was used for

fine neurosurgical biopsies, a non-laparoscopic procedure [11]. Since 2004 Kallo published

experience of trans gastric peritoneoscopy in a porcine model, the discussion about the benefit

of NOTE has been revealed to the public [12]. Yeung and Gourlay, in their review paper,

classified flexible multi-tasking platforms as mechanical, which are directly driven by hand

and robotic systems with actuators. The differences between the two systems are that for the

direct-driven robots, the actuating force comes from the endoscopist. At the same time,

actuators drive the actuator-driven robots based on information from a master platform. Direct-

driven robots are less bulky and are considerably cheaper because there is no requirement for

1.3 Background 4

any actuators. The control and actuation are in the same device, which makes it less intuitive

for the surgeon to control the mechanical system. For actuator-driven robots, due to the use of

master and slave systems, the controls for the endoscopist are separated from the actuating

means, making their design more straightforward and more ergonomic. A robotic manipulator

called Master, And Slave Transluminal Endoscopic Robot (MASTER) from Nanyang

Technological University can be used in tandem with a conventional flexible endoscope. The

two-armed prototype provids nine degrees of freedoms (DOF) in which the surgeon can get the

control of the slave manipulator with seven motorized DOFs, and two non-motorized DOFs

can be operated by endoscopist [13]. The MASTER has been tested and demonstrated its ability

to perform endoscopic submucosal dissection (ESD) [14]. Another electronically controlled

master-slave robot called ViaCath is a long-shafted, flexible, narrow bore instruments which

have fixed end-effectors [15]. It has also been used to perform endoscopic mucosal resection

in a live porcine model. [16]

The kinematics and dynamics of the flexible robot system are different from the traditional

rigid robot. When the robot composed of a series of driving elements, the behavior of these

robots tends to be continuous. In theory, the final shape of the robot can be described by a

continuous function, and a continuous mathematical model is needed to model this behavior.

Since soft robots are different from traditional rigid link-based systems, researchers have

developed new static, dynamic, and kinematic models to capture their bending and bending

capabilities [17]. Modeling of soft robots is still a significant challenge in current research [18].

Bryan A. Jones gave a differential method and a modified D-H method, which can enable the

robot to execute real-time task and shape control by mapping workspace coordinates to actuator

inputs, such as tendon lengths and pneumatic pressures, via robot shape [19] [20].

Moreover, the designers also often model the soft robots’ kinematics by using a simplified

assumption that leads to the constant curvature model [18]. Based on the constant curvature

model, the researchers developed a method to map the drive space to the configuration space.

These methods are unique to robots because they combine the characteristics of robot

morphology and the driving system. However, a constant curvature model cannot cover all

1.3 Background 5

aspects of a soft robot. In order to increase the envelope of the model, a non-curvature model

has been developed [21].

The inverse-kinematics problem of the soft robot is more challenging compared with forward

kinematics. For a continuum robot with constant curvature, the inverse mapping from task

space to configuration space is usually calculated in the robot independent inverse mapping

situations [22]. One prominent limitations of the existing methods for solving inverse

kinematics problems of linear flexible bodies is that neither the whole body nor the posture of

the end effector is considered in the solution, which may be essential for manipulation, sensing,

etc. One approach from Neppalli provides simple access to all the solution space of the rigid-

link robot, which can be easily applied to an n-link robot [23]. Nevertheless, this method does

not account for physical actuation limits like limited actuator lengths. Jacobian matrix provides

another method for independent inverse kinematics of the robot. It finds a single solution to the

problem from the initial guess through the virtual copy of the servo robot [24][25].

In order to control the motion of a robot, many sensors are involved. Among them, the vision

system is an effective way to realize precise motion control of a robot. The visual servo system

is an organic combination of robot vision and robot control [26]. It is a nonlinear and robust

coupling complex system involving image processing, robot kinematics and dynamics, control

theory, and other fields[27]. The existing methods can be divided into two categories: (1)

position-based visual servoing (PBVS), in which feedback is defined according to the 3D

Cartesian information from the image; (2) image-based visual servoing (IBVS), where

feedback is defined directly in the image according to the image features [28] [29]. Visual

servoing has been widely studied in the past decades, and many methods, such as the

homography method, have been proposed [30]. An approach based on the concept of a depth-

independent interaction matrix was developed by Y. H. Liu and H. Wang [31][32][33]. With

the development of a soft robot, it is worth developing a visual servoing algorithm for soft

robots. H. Wang also proposed a visual servo control method for a cable driven flexible robot

in 2013[34], which shows the enormous potential of applicability in medical surgery and

complex environments exploration.

1.4 Project Outline 6

1.4 Project Outline

In chapter 2, the hardware and algorithm design for the microDART robot are demonstrated.

In the hardware design part, a tendon driven robot end-effector design is demonstrated. Due to

the tendon driven structure, a cable-driven actuation system is developed. Stepper motors

control the cable-driven system as an open-loop control based on a mapping relationship

between the cable screw platform position and step numbers of the stepper motor. To provide

a wireless control function, a Wi-Fi modular is set up with a microcontroller to receive the

command from the PC and control the robot. Moreover, for a visual servoing system, the robot

end-effector and target tracking system are developed due to image recognition. To model the

movement of microDART, a constant curvature kinematics model is introduced to give the

relationship among end-effector working space, joint space, and actuator space. The visual

servoing algorithm is converted to be the error in damped least squares inverse kinematics

model whose results are calculated from the target and end-effector position difference and

Jacobian matrix. Moreover, to avoid the irregular shape change during servoing, an estimated

Jacobian matrix is demonstrated to compare with the differential Jacobian matrix method.

In chapter 3, the physical experiment is done to test the constant curvature model which leads

the catheter to move to an expected position as the model’s result. To test the inverse kinematics,

a rectangular trajectory is designed to give a target for the system. Both the differential Jacobian

matrix and estimated Jacobian matrix methods are tested on a MATLAB simulation

environment and a physical robot. For the visual servoing task, the robot is guided by the

inverse kinematics model and move to a target drawn on a paper. The catheter position is

tracked by an image recognition algorithm to give numerical data for analyzing process. A

contact location estimation will be discussed as an inspiration form the visual servoing

algorithm.

In chapter 4, the outcome of this project is discussed. The design and behavior of the modified

microDART system is discussed due to its performance during the project experiment. The

visual servoing system under the forward and inverse kinematics algorithms are discussed with

1.4 Project Outline 7

the state-of-the-art endoscopic navigation system. In future work, the 5G hyper-remote control

and haptic feedback control are worth discussing.

2.1 System Design 8

Chapter Ⅱ

Design

2.1 System Design

MicroDART is a multi-DOF flexible endoscopic robot. The robot’s hardware contains six main

parts, including catheter, camera, multi-channel tube, tendons, actuators, and control box. The

catheter is a high-performance nylon 3-D printed structure that can provide the robot bending

ability. Tendon is a steel wireline used to pass through the multi-channel tube which connected

with the catheter to control the bending angle. Five stepper motors linked to screw platforms

act as actuators for the system. Motor drivers and controllers with Wi-Fi modular are located

in the control box. Fig.2.1 and Fig.2.2 show the whole microDART robot system.

The control algorithm of the robot is image-guided feedback control. At first, to control the

robot, a forward kinematics model called constant curvature is introduced, which can set up

the relationship among end-effector working space, joint space, and driven space. PC can

recognize the catheter tip position and target position by real-time video stream, in which the

position error in the image can be calculated. As well as the error from image inputs into an

inverse kinematics method based on the Jacobian matrix and target error to get the joints to

pose. During the movement, the Jacobian matrix will keep updating until the robot reaches the

target and stop moving. The whole logic of the microDART visual servoing system is shown

as Fig.2.3.

2.1 System Design 9

Fig.2.1 Drawing of microDART robot system

Fig.2.2 Assembled microDART robot system

 Inverse
Kinematics

Jacobian
Update

J

Image
Error ΔP

Forward
Kinematics

Catheter
Move

Catheter
Position

Target
Positon

Δθ Δl +

-

Fig.2.3 Algorithm overview

2.1.1 Flexible Manipulator Design

The manipulator of microDART is called catheter, which can control the robot direction by

tension tendons. As Fig.2.4 shown, the catheter gets tension from the driven tendons then the

structure of the catheter will get some deformation, which performs as bending ability of the

plastic part (the core part of catheter design). To protect the catheter under high tension, the

material of the catheter is high-performance nylon which can provide 48𝑀𝑀𝑀𝑀𝑀𝑀/𝑚𝑚2 tensile

strength.

2.1 System Design 10

Fig.2.4 microDART Manipulator bending

(a) Disk Cutting original design (b) Compression when applied tension
Fig.2.5 Disk Cutting Design

Fig.2.6 Helix Design

As Fig.2.5(a) shown, the design of the catheter is called Disk Cutting. The main cylinder body

of the catheter is cut by disk-like to give space for deformation. The expected situation is that

the disk will move to the space under it when tension applies to it. However, the tension will

pass through the connected wall between disks, which will cause the deformation of the

connection wall to make an irregular shape of the catheter.

The final design of the catheter is shown in Fig.2.6. It is composed of seven units, and each

unit is composed of one disk and one helix bar. The disk on the top is called base disk, and the

bottom one is the terminal disk. Each joint has eight disk holes whose usage is for driven cables

and optical fibers. Each unit together to create a continuous soft mechanism under the driven

of disks.

2.1 System Design 11

Fig.2.7 Stepper motor structure

2.1.2 Actuation

Stepper motor is a kind of motor which converts electric pulse signal into corresponding

angular displacement or linear displacement. When a pulse signal is an input, the rotor will

rotate an angle or advance one step. The angular displacement or linear displacement of the

rotor output is directly proportional to the number of input pulses, and the rotational speed is

proportional to the pulse frequency. Stepper motor is generally composed of front and end

covers, bearings, central shaft, rotor iron core, stator core, stator components, corrugated

washer, screw, and other parts. As Fig.2.7 shown, the stepper motor uses the electromagnetic

principle to convert electrical energy into mechanical energy, which is driven by the coil wound

on the stator slot of the motor. Normally, the coil of wire is called a solenoid, while in a motor,

the wire wound in the stator slot is called a winding, coil, or phase.

To generate a strong enough magnetic field to control the stepper motors. An external motor

driver, 2M542-N produced by SainSmart is selected. The driver provided three different digital

inputs for function control, which are PLC+/-, DIR+/- and ENA+/-. PLC+/- is for clocked

square-wave pulse signal whose frequency controlled the angular velocity of the motor. DIR+/-

defined the rotation direction of the motor while Low-level input counter-clockwise and High-

level input for clockwise motion and ENA+/- is the enabling for the motor.

2.1 System Design 12

Fig.2.8 Stepper motors connection

The microcontroller for the actuation system is Teensy 3.6, whose processor is a 32 bit 180

MHz ARM Cortex-M4. As shown in Fig.2.8, the I/O port PIN0-PIN9 of Teensy 3.6 is

connected to the stepper motor drivers, in which PIN0, PIN2, PIN4, PIN6, PIN8 generate pulse

width modulation (PWM) signal to control the velocity with connecting with PLC+. PIN1 PIN3,

PIN5, PIN7, PIN9 connect to DIR+ to control the rotation direction. The PLS- and DIR- ports

of stepper motor drivers are wired to the ground (GND) of Teensy. The MicroDART robot

placed on the platform can be moved by motor 0 to provide the Z-axis displacement. Motor 1-

4 can control the driven cable, which can give bending ability of the catheter so that the tip of

the catheter can change the position in the X-Y plane.

To give the strain to the catheter tip, four steel cable was connected to the tip with a platform

that can be moved on stepper motors on the other side. To give an accuracy control to the cable,

a converted model from the stepper motorcycle and platform displacement is set in the

microcontroller code.

2.1.3 Communication
Internet protocol set supports a connectionless transport protocol, which is called user datagram

protocol (UDP). UDP provides a way for applications to send encapsulated IP packets without

establishing a connection. UDP protocol is used to process packets as TCP protocol. In the OSI

model, both of them are located in the transport layer, which is on the upper layer of the IP

2.1 System Design 13

Fig.2.9 Communication logic of microDART

protocol. UDP has the disadvantage of not providing packet Grouping, assembling, and sorting

packets, which means when a message is sent, and it is impossible to know whether it arrives

safely and completely. UDP message has no reliability guarantee, sequence guarantee, and flow

control field, so its reliability is poor. However, due to the fewer control options of the UDP

protocol, the delay is small, and the data transmission efficiency is high. For the MicroDART

wireless control, this project, the robot, and the PC both connected to the Wi-Fi router, which

is an unstable connection. For Transmission Control Protocol (TCP), the connection occurs

with a packet handshake. If the connection is lost due to the Wi-Fi signal, the robot will stop

moving until the connection rebuilt up. Hence, as Fig.2.9 shows, the communication system is

designed as the robot, and PC connect to the same router who can provide UDP communication

on local area networks (LAN).

To give MicroDART the ability of connection with Wi-Fi, an external control board NodeMcu,

which is developed based on an IoT Wi-Fi modular ESP8266, was connected to MicroDART

central controller Teensy. The serial port TX/RX of NodeMcu is wired to Teensy’s RX5/TX5

port. A byte command package, which includes 22 bytes, is created for sending data in UDP.

As Table 2.1 shows, the package contains one-byte header as the message start flag, and 20

bytes hold the motor movement command and one-byte terminal flag.

 Header Motor 1 Motor 2 Motor 3 Motor 4 Motor 0 Terminal

Encoded 0x24 Byte[4] Byte[4] Byte[4] Byte[4] Byte[4] 0x26

Decoded $ Float type Float type Float type Float type Float type &

Table 2.1 Communication protocol

2.2 Image Sensing 14

 (a) Raw image (b) Area detection

(c) MRB detection (d) Result image

Fig.2.10 Catheter and target detection

2.2 Image Sensing

The simulation task for microDART in this project is detecting a blue target on a white paper.

The camera is located at the end of the multi-channel tube. This configuration allows the

camera to gain the view of the whole catheter and blue target. The algorithm can be separated

into two parts. Part one consists of the pre-processing and area extraction, and part two

recognize the target and catheter position by the area extracted from part one.

For part one, the raw camera image is split into RGB channels and convert to a binary image

after filtering by a threshold. The raw blue target area is the subtraction of blue and red

channels—the inverse of summed up RGB channel intensity set as the catheter area. The two

images are then processed by Gaussian blur, followed by the open morphological operation to

reduce noise and give continuous area results as Fig.2.10 (a) and (b) shows.

2.3 Forward Kinematics 15

Fig.2.11 Constant curvature modeled catheter

For both target and catheter, using the Suzuki border following algorithm to extract contours

from the result area in part one[35]. Furthermore, get the minimum bounding rectangle (MBR)

of the areas by rotating calipers [36]. Both contours detection and MBR algorithm are

implemented in the OpenCV library. For the blue target, the center of the MBR result rectangle

is the target point. For the catheter, the functions of two shorter sides of the rectangle can be

calculated as 𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 . The line with a higher bias value 𝑏𝑏 will be selected then the

average of contacted points in the area with the selected line is the catheter tip point.

2.3 Forward Kinematics

The traditional rigid-body robot can be modeled and analyzed by Denavit- Hartenberg matrix.

Nevertheless, for a flexible structure robot like MicroDART in this project does not have

rotation and translation joints. For this project, the kinematics analysis algorithm is the

Constant Curvature Model. For constant curvature model, (1) assume that the catheter is equal

to the smooth curvature continuous curve; (2) the weight of the whole catheter and driven cable

is negligible; (3) assume that during the bending process the driven cable is equal curvature of

the curve [37].

The original of the coordinator system is in the center of the base disk, and the Z-axis is

perpendicular to the support disk and points to the longitudinal extension. The X-axis points to

the first driven cable hole of the disk. The Y-axis of the coordinate system is set due to the

right-hand rule. The geometric model of a single unit of the catheter is shown in Fig.2.11, where

α is the rotation angle, and β is the bending angle.

2.3 Forward Kinematics 16

Fig.2.12 microDART end-effector working space

The driven cable is connected to four stepper motors, so the kinematics analysis should not

only include the relationship between joint space and operating space but also includes the

transformation from driven system to joint space. Hence, the kinematics problem of

MicroDART can be divided into two parts: First, find the relationship between the end-effector

position and the angle α and β. Second, deduce the transformation from the driven cable

length change Δ𝑙𝑙 and angle α and β.

The transforming part of kinematics is from the translation of the coordinate system from base

to termina, rotate Z-axis, then rotate Y axis followed by rotating Z axis again. The

transformation matrix is shown below:

𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �
𝑙𝑙
𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐α(1 − 𝑐𝑐𝑐𝑐𝑐𝑐β),

𝑙𝑙
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠α(1 − 𝑐𝑐𝑐𝑐𝑐𝑐β),

𝑙𝑙
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠 β�𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧,α)𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦,β)𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧,−α)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑐𝑐𝑐𝑐𝑠𝑠2α + 𝑠𝑠𝑠𝑠𝑛𝑛2𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑛𝑛2𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝑐𝑐𝑐𝑐𝑠𝑠2𝛼𝛼

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑙𝑙
𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑙𝑙
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0 0

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑙𝑙
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(1)

According to the formula, the equation of rotation angle and bending angle can be concluded

as:

2.3 Forward Kinematics 17

α = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑝𝑝𝑦𝑦
𝑝𝑝𝑥𝑥
� (2)

β = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝛼𝛼) (3)

The range of bending angle β is (0,π]. Hence, we can calculate the range if α is [0,2π).

The length of the catheter of the microDART design is 60 mm. So the working space of

microDART end-effector can be analyzed by formula (1), the parameters in the formula are:

𝑙𝑙 = 60𝑚𝑚𝑚𝑚,α ∈ [0,2π),β ∈ (0,π]. Draw the working space in MATLAB, as shown in Fig.2.12.

The result of MicroDART, working space simulation, it looked like a three fourth ball. However,

during the calculation of the simulated shape, there is no consideration about the z-axis

displacement. In that case, if the MicroDART can move in the z-axis direction, the working

space should be a cylinder-like shape.

To simplify the calculation, the bending curve of a single element is set to be the equivalent

curve. Because of the offset between the driven cable hole and the center of the disk, the

curvature radius is different even their bending angles are the same. The first drive wire length

can be concluded by formula (4) as:

Δ𝑙𝑙1 = 𝑙𝑙 − 𝑙𝑙1 = �
1
𝑘𝑘
−

1
𝑘𝑘1
� 𝛽𝛽 =

𝑘𝑘1 − 𝑘𝑘
𝑘𝑘𝑘𝑘1

𝛽𝛽 = 𝑟𝑟1𝛽𝛽 (4)

Where, 𝑘𝑘,𝑘𝑘1 is the curvature of the catheter and 𝑟𝑟1 represents the distance between the

driven cable and the center of the disk. Therefore, when the catheter’s bending angle is β, and

the rotation angle is α, we can get the four driven cable variation by the formulas (5) as below:

⎩
⎪
⎨

⎪
⎧

Δ𝑙𝑙1 = 𝑟𝑟1𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

Δ𝑙𝑙2 = 𝑟𝑟2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 �𝛼𝛼 −
𝜋𝜋
2
�

Δ𝑙𝑙3 = 𝑟𝑟3𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝛼𝛼 − 𝜋𝜋)

Δ𝑙𝑙4 = 𝑟𝑟4𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 �𝛼𝛼 −
3𝜋𝜋
2
�

(5)

Now we have the mapping relationship between joint working space and the driver space. It is

2.4 Inverse kinematics 18

also easy to map the formula from drive space to joint space as:

α = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �−
Δ𝑙𝑙2
Δ𝑙𝑙3

� (6)

𝛽𝛽 =
Δ𝑙𝑙1

𝑟𝑟1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(7)

The range of α is [0,2𝜋𝜋], so we can obtain the two solution difference of formula (6) is 𝜋𝜋.

However, form formula (5) we can conclude that if Δ𝑙𝑙1 < 0, 𝛼𝛼 ∈ [𝜋𝜋
2

, 3𝜋𝜋
2

], and if ∆𝑙𝑙1 > 0, then

𝛼𝛼 ∈ [0, 𝜋𝜋
2

] ∩ [3𝜋𝜋
2

, 2𝜋𝜋). Now we can conclude the only solution of rotation angle α. Hence, we

can calculate the value of β by the only solution of α.

2.4 Inverse kinematics

To control the movement of a robot, the standard way is using inverse kinematics. The inverse

kinematics algorithm of MicroDART in this project is the damped least squares method

[38][39]. One way to solve the problem of whether there are component solutions related to

small singular values is to balance the cost of the large solution and the cost of sizeable residual

error by minimizing their sum[40].

||𝐽𝐽Δ𝜃𝜃 − 𝑒𝑒||2 + 𝜆𝜆2||Δ𝜃𝜃||2 (8)

This rewrite of the original equation is known as damped least squares [41]. This can be written

as

|| � 𝐽𝐽𝜆𝜆𝜆𝜆� Δ𝜃𝜃 − �𝑒𝑒
0
� ||2 (9)

The unique minimizer angle change is shown as:

Δθ = [Δα,Δβ] = (𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜆𝜆2𝐼𝐼)−1𝐽𝐽𝑇𝑇𝑒𝑒 (10)

Both sides of the equation are equally multiplied by (𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜆𝜆2𝐼𝐼) , we can find

2.5 Jacobian Matrix Update 19

(𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜆𝜆2𝐼𝐼)−1𝐽𝐽𝑇𝑇 = 𝐽𝐽𝑇𝑇(𝐽𝐽𝐽𝐽𝑇𝑇 + 𝜆𝜆2𝐼𝐼)−1, hence formula(10) can be written as

Δθ = [Δα,Δβ] = 𝐽𝐽𝑇𝑇(𝐽𝐽𝐽𝐽𝑇𝑇 + 𝜆𝜆2𝐼𝐼)−1𝑒𝑒 (11)

Where 𝜆𝜆 ∈ ℝ is non-zero damping constant, 𝐽𝐽 is the Jacobian matrix. 𝐽𝐽𝑇𝑇𝐽𝐽 and 𝐼𝐼 are 𝑛𝑛 × 𝑛𝑛

matrix where 𝑛𝑛 is the degrees of freedom. 𝑒𝑒 is the difference between target and end-effector

position.

The Jacobian matrix is a function of the angles θ values defined by

𝐽𝐽(θ) = �
𝜕𝜕𝑋𝑋𝑖𝑖
𝜕𝜕𝜃𝜃𝑗𝑗

�
𝑖𝑖𝑖𝑖

(12)

Where 𝜕𝜕𝜕𝜕𝑖𝑖 is the end-effector speed. It is easy to get the Jacobian matrix by calculating the

differential of the forward kinematics formula (1). Let us give a name of this method as the

“differential Jacobian matrix”. In the next section, another method called the “estimated

Jacobian matrix” will be introduced. The result of the differential Jacobian matrix is shown

below:

𝐽𝐽(θ) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑙𝑙
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)

𝑙𝑙
𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +

𝑙𝑙
𝛽𝛽2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)

−
𝑙𝑙
𝛽𝛽
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)

𝑙𝑙
𝛽𝛽2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1) +
𝑙𝑙
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0
𝑙𝑙
𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −

𝑙𝑙
𝛽𝛽2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

(13)

Hence, we can update the Jacobian matrix after each movement by the formula(13) and input

the new calculated Jacobian matrix to next time inverse kinematics calculation.

2.5 Jacobian Matrix Update

In the visual servo task, the kinematic model is considered to be inaccurate because of the

uncertainty of the external contact force. This section introduces an “Uncalibrated visual

servoing” [42], which can help us update the Jacobian matrix for damped least squares inverse

2.6 Visual Servoing 20

kinematics. It enables robot manipulation without the pre-known kinematics relationship and

camera parameters[43] [44] [45]. In this kind of algorithm, the Jacobian matrix is directly

estimated from the image motion. We call this method the “estimated Jacobian matrix”.

Assume the joints state vector change Δ𝜃𝜃 of the MicroDART robot at a time 𝑡𝑡𝑖𝑖 is known,

whose state vector is the rotation α and bending angle β. We equipped a camera on the tip of

the catheter of MicroDART, which can track the position of the tip. As a result, we can know

the pose Δ𝑝𝑝 as time 𝑡𝑡𝑖𝑖, the formula without any knowledge about the robot kinematics can be

demonstrated as below.

Δ𝑝𝑝 ≅ 𝐽𝐽(𝜃𝜃)Δ𝜃𝜃 (14)

By Broyden-type rank, one updating the estimated Jacobian matrix can be calculated by the

following formula(15)

𝐽𝐽𝑖𝑖+1 = 𝐽𝐽𝑖𝑖 + 𝜅𝜅
Δ𝑝𝑝 − 𝐽𝐽𝑖𝑖Δ𝜃𝜃
Δ𝜃𝜃𝑇𝑇Δ𝜃𝜃

Δ𝜃𝜃𝑇𝑇 (15)

Factor 𝜅𝜅 is the step size of iteration, and it needs to be related to the system’s sampling

frequency, which is the video frame FPS. It can be shown that the Jacobian 𝐽𝐽 converges when

remains similar between two iteration steps. Until now, the primary visual servoing algorithm

was established. The next chapter will demonstrate some simulation and real-world

experiments to evaluate the methods in Chapter 3.

2.6 Visual Servoing

In the last section, an inverse kinematics solution for the manipulator was introduced, which

can let the visual servoing system in this project easy to solve. For the visual servoing system,

the main idea is to minimize the error between the end-effector and target through the image

like the equation below.

𝑒𝑒(𝑡𝑡) = 𝑠𝑠(𝐼𝐼(𝑡𝑡),𝑎𝑎) − 𝑠𝑠∗ (16)

2.6 Visual Servoing 21

Fig.2.13 Coordinates in a camera system

In which 𝑠𝑠 is the features extracted from the image 𝐼𝐼(𝑡𝑡) at time 𝑡𝑡 based on system hardware

information 𝑎𝑎 like camera parameters and 𝑠𝑠∗ is the target feature.

For the damped least squares method in section 2.4, it has already been optimized to minimize

the end-effector error and target error in the working space. Hence the problem becomes how

to convert the working space (or real-world coordinates) to camera pixel space. This problem

should involve four different coordinates systems: world coordinate system, camera coordinate

system, image coordinate system, and pixel coordinate system.

Where the world coordinate system is 𝑂𝑂𝑤𝑤 − 𝑋𝑋𝑤𝑤𝑌𝑌𝑤𝑤𝑍𝑍𝑤𝑤 described the camera position in the

real world, camera coordinate system 𝑂𝑂𝑐𝑐 − 𝑋𝑋𝑐𝑐𝑌𝑌𝑐𝑐𝑍𝑍𝑐𝑐 whose original point is the optical center,

image coordinate system 𝑜𝑜 − 𝑥𝑥𝑥𝑥 image coordinate system with the optical center as image

center point, and pixel coordinate system 𝑢𝑢𝑢𝑢 whose original point is the top left corner. Then

through the transformation of the above four coordinate systems, we can get how a point

transforms from the world coordinate system to the pixel coordinate system as the formula

below.

�
𝑢𝑢
𝑣𝑣
1
� = 𝐼𝐼𝑂𝑂�⃗ �

𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤
1

� = �
𝑓𝑓𝑥𝑥 0
0 𝑓𝑓𝑦𝑦
0 0

𝑢𝑢0 0
𝑣𝑣0 0
1 0

� �𝑅𝑅 𝑇𝑇
0 1� �

𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤
1

� (17)

Where 𝐼𝐼 is camera internal parameters and 𝑂𝑂�⃗ is extrinsic camera parameters.

Yc

Xc

Zc

Oc

Ow

Zw

Xw

Yw

u

v

o

x
y

f

P(Xw,Yw,Zw)

p(x,y)

3.1 Forward kinematics 22

Chapter Ⅲ

Experiment and Results

3.1 Forward kinematics

There is no sensor to measure the distance between the catheter tip and the target plane. So for

the experiment in this and rest sections, we only considered the end-effector’s movement in the

X-Y plane. The catheter tip will be manually put at the position where it can contact with the

target plane. In this situation, as the length of the catheter is 60mm, the start end-effector

position should be [0,0,60]. As the simulation Fig.is shown in Section 2.3, when the catheter

applies a movement in X-axis and Y-axis, it will perform a backward move in Z-axis. Hence,

to compensate for the Z-axis movement, which means let the catheter tip keep contacting with

the working plane, the motor 0, which controls the Z-axis position will move when there is any

movement applied on X-axis and Y-axis. The value of Z-axis compensation can be calculated

by the formula(1) as 𝑙𝑙 − 𝑙𝑙
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽) in which the length l is 56mm.

To test the forward kinematics model, a 3mm square drawn on a white paper as a reference.

The first test is trying to pull the right driven cable backward 4mm. At the same time due to the

formula(5), we can get if 𝑟𝑟1 = 𝑟𝑟3 = 𝑟𝑟 then  Δ𝑙𝑙3 = 𝑟𝑟β𝑐𝑐𝑐𝑐𝑐𝑐(α − π)  =   − 𝑟𝑟β𝑐𝑐𝑐𝑐𝑐𝑐α = −Δ𝑙𝑙1 .

Hence, the left driven cable should be pushed forward 4mm. To avoid unlimited solutions

during the calculation, the up and down driven cable was given a minimal value as 0.001mm

and -0.001mm. The expected angle change calculated from constant curvature of this cable

configuration isα = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �− 0.001
40

� = −2.5 × 10−5,β = Δ𝑙𝑙3
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟α

= 14.2857 . Then convert

the joint change into the working space. The end-effector position should be

[30.16,0.00075,34.47] mm. The movement procedure from the first view camera of

microDART is shown in Fig.3.1.

3.1 Forward kinematics 23

Fig.3.1 Catheter movement procedure

Fig.3.2 Catheter trajectory under command from forward kinematics

As the Fig.3.1 is shown, the catheter move from the left of the box to the right of it. The length

of the box side is 3cm, and the base platform moved forward 21.53mm to keep contact with

the target plane. The expected trajectory of the catheter is to move 30.16mm from left to right,

and through the robot's first view, we can see the robot finished the task correctly. Moreover,

through the photo of the top view, we can also see that the base platform succeeds in giving a

Z-axis compensation, and the shape of each segment of the catheter keeps a constant curvature.

The catheter was controlled to reach several movement targets as moving to right 20mm, to

0 5 10 15 20 25
Displacement in x [mm]

-5

0

5

Catheter Image Trajectory

0 5 10 15 20 25 30 35
Displacement in x [mm]

-5

0

5
(a) 20mm Movement

Catheter Image Trajectory

0 5 10 15 20 25 30 35 40 45
Displacement in x [mm]

-5

0

5
(b) 30mm Movement

Catheter Image Trajectory

(c) 40mm Movement

3.2 Inverse kinematics 24

Fig.3.3 Target and simulated trajectory by differential Jacobian matrix method

right 30mm and to right 40mm. Figure 3.2 shows the catheter tip recoded by camera with the

algorithm in section 2.2. All the three commands were perfectly executed by the microDART

robot. It is noticed that the error became larger with the distance increasing, which are 0.5mm

in 20mm movement, 1.5mm in 30mm and 2mm in 40mm.

In this section, the constant curvature model shows an excellent performance about mapping

the relationship between driven cable space, joint space, and end-effector working space. To

finish the visual servoing task, a more numerical experiment is done in the next sections.

3.2 Inverse kinematics

To test the algorithm, a rectangular trajectory is defined as the end-effector target position, as

Fig.2.3.1 shown. There are five parts in the movement of the trajectory:

1. Start in (0,0), move alone x-axis from 0mm to -30mm.

2. Move alone y-axis from 0mm to 15mm reach the point (-30,15).

3. Move alone x-axis from -30m to 30mm get point (30,15).

4. Move alone y-axis from 15mm to 0mm.

5. Move alone x-axis from 30mm to 0mm back to the original point (0,0).

-30 -20 -10 0 10 20 30
Position in x [mm]

-5

0

5

10

15

20
Simulation Trajectory
Target Trajectory
Start and End Points

3.2 Inverse kinematics 25

Fig.3.4 Inverse kinematics simulation based on differential Jacobian matrix

Use the inverse kinematics we discussed before to follow the triangular traction. The

comparison of the expected and temporary position in x-displacement and y-displacement is

shown below. The resultant error is calculated by the square root of the errors in the X-axis and

y-axis directions whose equation is 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑥𝑥2 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑦𝑦2.

The calculated trajectory in the x-axis over time can be seen from Fig.3.4(a), and the y-axis is

from Fig.3.4(b). The experiment results follow the shape of the defined trajectory. In these two

Figures, the amplitudes cannot be distinguished clearly.

(a) Displacement in x over time (b) Displacement in y over time

(c) Resultant error in [x,y] over time

0 20 40 60 80 100
Time [s]

-30

-20

-10

0

10

20

30

Di
sp

la
ce

m
en

t i
n

x
[m

m
]

Trajectory
Experiment

0 20 40 60 80 100
Time [s]

-4

-2

0

2

4

6

8

10

12

14

16

Di
sp

la
ce

m
en

t i
n

y
[m

m
]

Trajectory
Experiment

0 10 20 30 40 50 60 70 80 90 100
Time [s]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Di
sp

la
ce

m
en

t [
m

m
]

3.2 Inverse kinematics 26

Fig.3.5 Trajectories form simulation and camera based on differential Jacobian matrix

In Fig.3.4(c), the displacement error can be demonstrated clearly. The total error of the x-axis

and y-axis is less than 0.1. It is noticed that the error keeps increasing. Generally speaking, the

algorithm only generates a small error that shows the damped least square can solve the inverse

kinematics problem quiet well.

Assume the trajectory is in the real world and input the target points on the rectangular to the

microDART robot one by one, so the expected trajectory of the robot should be rectangular. In

other words, this experiment is to test the combination of the constant curvature and damped

the least square with the differential Jacobian matrix. In section 4.2, the catheter tip tracking

method was introduced. In this section and the next two sections, the camera will keep

recognizing the catheter tip position and recoding it. Convert the image pixel position to real-

world position and draw the trajectory as Fig.3.5.

The microDART moved a rectangular liked trajectory, as Fig.3.5 shown. At the start, the tip

was at (0,0) and moved to the lower-left direction, but the trajectory is always under the

simulation results. Then followed the command to increase the Y-axis value, but it cannot reach

the top right corner. After that, the catheter moved to the right and can follow the simulation

result in a range of -10mm to 5mm. However, it still cannot reach another highest position on

-30 -20 -10 0 10 20 30
Position in x [mm]

-5

0

5

10

15

20

Simulation Trajectory
Image Trajectory

Start and End Points

3.2 Inverse kinematics 27

Fig.3.6 Comparison between simulation result and experiment result

the right side. To show the algorithm more clearly, the differences in X-ais and Y-axis are shown

as Fig.3.6.

In Fig.3.6 (a), the overall error is not very big, and the catheter in the image followed the

expected simulation result most of the time. Before the 20s, the catheter keeps moving ahead

of the expected result, which shown as the green line is always higher than the red one, and the

error creeps down until the catheter stop moving in X-axis at 20s. From the 20s-40s catheter

start to move in Y-axis, and the error in X-axis climb up, but after the 30s, when the X-axis

direction starts to move again, the error drop to its lowest point at 40s and start to edge up until

next time movement in X-axis.

In Fig.3.6 (b), the image trajectory whose color is green is always lower than the expected

position. Especially for 10-40s and 65-70s, the difference is about more than 2mm. However,

the shape and the movement trend are the same as the simulation result. In summary, with the

distance from the original start point, increasing the error keep at a high level. However, for

the near start point position like 0-10s, 50-60s, and last 10s, both X-axis and Y-axis differences

are not very high.

0 20 40 60 80 100
Time [s]

-30

-20

-10

0

10

20

30

Simulation Trajectory
Image Trajectory

0 20 40 60 80 100
Time [s]

-4

-2

0

2

4

6

8

10

12

14

16

Simulation Trajectory
Image Trajectory

(a) Displacement in x-axis (b) Displacement in y-axis

3.3 Estimated Jacobian Matrix 28

Fig.3.7 Target and simulated trajectory by estimated Jacobian matrix method

3.3 Estimated Jacobian Matrix

Use the same rectangular trajectory design, as shown in Section 2.4, to test the estimated

Jacobian matrix algorithm.

1. Start in (0,0), move alone x-axis from 0mm to -30mm.

2. Move alone y-axis from 0mm to 15mm reach the point (-30,15).

3. Move alone x-axis from -30m to 30mm get point (30,15).

4. Move alone y-axis from 15mm to 0mm.

5. Move alone x-axis from 30mm to 0mm back to the original point (0,0).

The target trajectory and end-effector simulated trajectory of the robot is shown as Fig.3.7

Same as Section 2.3, we use the comparison of the expected and experimental position in x-

displacement and y-displacement and total error �𝑥𝑥2 + 𝑦𝑦2 to evaluate the performance of the

estimated Jacobian matrix inverse kinematics algorithm.

-30 -20 -10 0 10 20 30
Position in x [mm]

-5

0

5

10

15

20
Simulation Trajectory
Target Trajectory
Start and End Points

3.3 Estimated Jacobian Matrix 29

Fig.3.8 Inverse kinematics simulation based on estimated Jacobian matrix

Fig.3.8 (a) demonstrates the displacement in X-axis, and there is no apparent difference

between simulation result and target except the time from 105s to 110s, where is a 1mm error.

However, for Y-axis displacement, there are two times oscillations at the beginning of the

movement in the 0-30s. After the 30s, the error keeps a low level, which is less than 1mm. Both

X-axis and Y-axis show a higher difference with the expected one while the other direction is

moving instead of itself.

0 50 100 150
Time [s]

-30

-20

-10

0

10

20

30
D

is
pl

ac
em

en
t i

n
x

[m
m

]

Trajectory
Experiment

0 50 100 150
Time [s]

-4

-2

0

2

4

6

8

10

12

14

16

D
is

pl
ac

em
en

t i
n

y
[m

m
]

Trajectory
Experiment

0 50 100 150
Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Di
sp

la
ce

m
en

t [
m

m
]

(a) Displacement in x over time (b) Displacement in y over time

(c) Resultant error in [x,y] over time

3.3 Estimated Jacobian Matrix 30

Fig.3.9 Trajectories form simulation and camera based on estimated Jacobian matrix

Fig.3.8 (c) shows the tendency of the difference between the expected target position and the

inverse kinematics simulation results. At the start 50s, there is two maximum local error due to

the oscillation in Y-axis that is 1.6mm and 1.2mm. After that, the error is keeping lower than

0.5mm until another peek in 110s. It can be seen from Fig.3.8 (a) and Fig.3.8 (b) there are both

an obvious error in X-axis and Y-axis. The highest difference is 1.6mm, with a fluctuate around

0.4mm most of the time, which shows the estimated Jacobian matrix method performs well

enough in simulation.

As section 3.2, there is also a real-world test for this algorithm. The camera also keeps

recording the catheter tip position by image recognition in Section 2.2.

The trajectory guided by the estimated Jacobian matrix is almost the same as the last section,

one whose Jacobian matrix is from the differential Jacobian method. The trajectory also shows

a rectangular liked shape, and it also cannot reach the top left, top right, and bottom right point

in the simulation result. Especially for the top left corner, the displacement error is about 5mm.

-30 -20 -10 0 10 20 30
Position in x [mm]

-5

0

5

10

15

20

Simulation Trajectory
Image Trajectory

Start and End Points

3.4 Visual Servoing 31

Fig.3.10 Comparison between simulation result and experiment result

As Fig.3.10 (a) shown the displacement in X-axis, for the first 30s, the catheter in the image

leads the simulation trajectory about 1mm. For the 30s-50s, the movement is accurate as of the

expected one. Nevertheless, after the 50s, the error starts to rise again, and the image position

lag to the simulation one until it finishes the movement. It is noticed that in the last round of

the X-axis movement in which the duration of 120s-150s, the error decrease to a low level

again. In Fig.3.10 (b), the displacement in Y-axis, the image trajectory, also shows oscillation

in the first 30s, which fits the simulation results. Moreover, before the 110s, the real-world

trajectory always lags the simulation results.

3.4 Visual Servoing

In this section, all the algorithms introduced in previous sections will be combined for testing

the visual servoing feedback control. The two different methods Differential Jacobian Matrix

and Estimated Jacobian Matrix for updating the Jacobian matrix in damped least square inverse

kinematics are both discussed as a comparison. As section 2.2 said, the test for this project is a

blue target on a white paper. To see how accurate the method is, the blue target is drawn on the

3mm square top right corner so we can have a scaled reference system. The task aims are to try

to let the image feedback guide the robot start in the bottom left corner to move to the blue

target on the top right corner of the square.

0 50 100 150
Time [s]

-30

-20

-10

0

10

20

30

Simulation Trajectory
Image Trajectory

0 50 100 150
Time [s]

-4

-2

0

2

4

6

8

10

12

14

16

Simulation Trajectory
Image Trajectory

3.4 Visual Servoing 32

Fig.3.11 Video frames during visual servoing based on differential Jacobian matrix

3.4.1 Damped Least Squares with Differential Jacobian Matrix

The video frame after recognition is recorded by me, as Fig.3.11(a) shown the catheter does

not need any time to converge the movement direction. It directly moves to the target step by

step until it reaches the target and stops. There are ten frames from the video stream

demonstrated as Fig.3.11.

Fig.3.11 shows that when the catheter arrives at the target, there is still a small difference. The

reason is that to avoid catheter obscuring blue target position in the camera first view. A

threshold is set for the error, which means when the distance between the catheter tip and the

target is less than 2mm, the movement will stop.

To get more detailed information, the catheter tip position is kept tracking and saved. Fig.3.12

(a) compares the model trajectory and the real-time catheter trajectory on the image. The

constant curvature model calculates the blue line model trajectory with the angle value from

damped least square inverse kinematics. The red line is the automatic recognition result from

the video frame. It is noticed that the model trajectory always is higher than the image one.

Moreover, in the beginning, the red line moved away from the target about 2mm and then

started to converge to the right result. Overall, the catheter tip in the image moved from (-0.86,-

1.86)mm to (29.8,31.83)mm, which is from the bottom left corner to the top right.

3.4 Visual Servoing 33

(a) Trajectory in camera and trajectory from model (b) Error in X-axis and Y-axis

Fig.3.12 Trajectory based on differential Jacobian matrix tracked by camera

In Fig.3.12 (b), the displacement error in X-axis and Y-axis are demonstrated separately. The

error is an image error, which means the catheter position and target position are both extracted

from image information by Section 4.5 algorithm. It is easy to notice that the catheter moves

to a negative Y-axis in the first-time movement that is the same as a result shown in Fig.(a). In

the beginning, the converging speed on X-axis is faster than Y-axis. Then after 13th iteration,

the Y-axis converge speed surpass X-axis’ one. Both X-axis and Y-axis decrease from about

30mm to around 0mm after 16 times iterations. The errors after servoing control are 1.9mm in

X-axis and 0.8 on Y-axis.

There are two more visual servoing tasks tested, which are 20mm square and 30mm square.

Both of the tasks is to let the catheter move from the bottom left corner of the square to the top

right corner. As can be seen from Fig.3.13, all three trajectories can coverage under the visual

servoing algorithm. However, the trajectory still shows some oscillation during the movement

which caused the trajectory was not the shortest path from the start point to the end point. As

table 3.1 shown, each target is tested ten times and the iteration times are both from 13 to 22

that means iteration speed is not related to the target distance.

-5 0 5 10 15 20 25 30
Displacement in x [mm]

-5

0

5

10

15

20

25

30

35

Model Trajectory
Image Trajectory

0 5 10 15
Iteration

0

5

10

15

20

25

30

35
X-axis error
Y-axis error

End Point
Start Point

3.4 Visual Servoing 34

Fig.3.13 Trajectories of three different distance targets by differential Jacobian matrix

 1 2 3 4 5 6 7 8 9 10
20mm 17 21 21 13 18 22 15 19 19 17
30mm 21 13 16 14 20 22 19 16 17 15
40mm 14 17 17 20 21 13 15 17 22 16

Table 3.1 Iteration times of three different distance targets

3.4.2 Damped Least Squares with Estimated Jacobian Matrix

Same as Section 3.4.1, the video frame is recorded and demonstrated what is the procedure

during the visual servoing control. This time the catheter took more time to reach the target.

Fig.3.13 shows 15 frames of recognition result video stream.

At beginning, the tip of the catheter moved to the lower-left direction, which is opposite from

the target. Then it changed the direction to the right of the X-axis with a small bias on the

position of Y-axis. The following movement is to the bottom right, followed by a direction

changing to higher left. After almost reaching the top left corner of the square, it turns to

converge to the target and move to position X-axis direction, then the catheter reached the

target area and stopped moving.

-5 0 5 10 15 20 25 30 35 40 45
Displacement in x [mm]

-5

0

5

10

15

20

25

30

35

40

20mm Square Trajectory
30mm Square Trajectory
40mm Square Trajectory

Start Point
End point

3.4 Visual Servoing 35

Fig.3.14 Video frames during visual servoing based on estimated Jacobian matrix

Fig.3.15 Trajectory based on estimated Jacobian matrix tracked by camera

Fig.3.14 (a) shows the constant curvature trajectory during the movement (blue line) and

trajectory extracted by imaging recognition (red line). The two trajectories are almost the same,

which means the movement matched the constant curvature kinematics model. There are five

steps before the catheter reaches the blue target: 1. Move away from the target to lower left get

(-4,0). 2. Change to the higher right direction. 3. After getting the point (1,6), change direction

to move to (15,0) 4. Start to increase height to top left corner (3,28). 5. Move directly to target

in the position X-axis direction and stopped in (27,31).

-10 0 10 20 30
Displacement in x [mm]

-10

-5

0

5

10

15

20

25

30

35

40

Model Trajectory
Image Trajectory

0 10 20 30 40
Iteration

-5

0

5

10

15

20

25

30

35

40
X-axis error
Y-axis error

End Point
Start Point

3.4 Visual Servoing 36

Fig.3.16 Trajectories of three different distance targets by the estimated Jacobian matrix

As Fig.3.14 (b) shown, the tendency of error in the X-axis and Y-axis looked the same. Both of

them reduce at the beginning and raise, followed by a continuous dropping. The error in X-axis

started in 30mm, which is the original point and soar up to 36mm, which corresponding to the

behaviors of moving away to the lower left in Fig.3.14 (a). Then the error decrease to 15mm,

followed by another time increase to 28mm. After that, the error keeps slumping to 4.7mm and

stops. For the Y-axis error, it converges after the 11th iteration. After a 2mm increase to 32mm,

the error drop to 25mm and crept up to 30mm in 11th iteration. Then the error keeps plummeting

to reach -1mm in 38th iteration and stop moving. The final errors after visual servoing guided

movement are 4.7mm in X-axis and 1mm in Y-axis.

Same as the last section of the differential Jacobian matrix method, there also two more

different distance targets were tested. It is easy to see from the Fig.3.16 the estimated Jacobian

converged slower than the differential one. The trajectory shows that the catheter moved away

from the target at the beginning which will cause an unstable movement. The converge time of

estimated Jacobian is much more than the differential method which is from 27 to 41, as Table

3.2 shown. However, because the catheter sometime will move away from the target, which

would cause the movement of the camera. And the target point would go out of camera view.

As a result, during the test of visual servoing by the estimated Jacobian matrix, there are several

times failed to converge to the target.

-20 -10 0 10 20 30 40
Displacement in x [mm]

-20

-10

0

10

20

30

40

50

20mm Square Trajectory
30mm Square Trajectory
40mm Square Trajectory
Start Point
End point

3.4 Visual Servoing 37

Index
Distance

1 2 3 4 5 6 7 8 9 10

20mm 39 37 40 38 34 27 X 40 38 31
30mm 36 40 27 X 41 35 27 31 X 29
40mm X 33 32 X 38 31 38 41 41 35

X means the test did not converge
Table 3.2 Iteration times of three different distance targets

3.4.3 Contact Location Estimation

During the visual servoing control, a contact force location estimation was inspired. From

formula (13) we can get the equation of Jacobian matrix in X-Y plane as :

𝐽𝐽(θ) =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕 ⎦

⎥
⎥
⎥
⎤

= 𝑙𝑙

⎣
⎢
⎢
⎡

1
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)

1
𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +

1
𝛽𝛽2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)

−
1
𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)

1
𝛽𝛽2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1) +
1
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

⎦
⎥
⎥
⎤

(18)

It is easy to calculate the determinant of the matrix on the right side of the formula (18).

𝑑𝑑𝑑𝑑𝑑𝑑 �
1
𝑙𝑙
𝐽𝐽(θ)� =

(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 1)
𝛽𝛽3

(19)

In the procedure of visual servoing, the catheter must have a bending angle, and it is also

impossible to be bent over 90° so the range of bending angle will be 𝛽𝛽 ∈ (−𝜋𝜋
2

, 0) ∪ (0, 𝜋𝜋
2

).

Because the differential of (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 1) is 𝛿𝛿 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 that is still larger than zero in

the range of bending angle. It is easy to get the value of (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 1) is in the range

of �−1 − 𝜋𝜋
2

, 0� ∪ �0, 𝜋𝜋
2
− 1�, which means the matrix is full-ran. As a result, the formula (18)

can be rewritten to calculate the length of the working part of the catheter as formula (20).

𝑙𝑙 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡

1
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)

1
𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +

1
𝛽𝛽2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)

−
1
𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)

1
𝛽𝛽2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1) +
1
𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

⎦
⎥
⎥
⎤
−1

⟹ 𝑙𝑙 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡

−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 1

𝛽𝛽2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 1⎦

⎥
⎥
⎥
⎤

(20)

3.4 Visual Servoing 38

(a) The catheter with an obstruction (b) Length of the catheter’s first five segments
Fig.3.17 Catheter with external contact

The camera can extract the position of target and end-effector, and the operation time can be

recorded by PC. Hence the end-effector speed 𝜕𝜕𝜕𝜕𝑥𝑥,𝜕𝜕𝜕𝜕𝑦𝑦 can be calculated. At the same time,

the joint information (rotation angle 𝛼𝛼 and bending angle 𝛽𝛽) is an output of the damped least

square inverse kinematics in visual servoing procedure, which means the joint speed 𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕

can also be calculated based on the time recorded by PC. Hence, the formula (20) can calculate

the working length of the catheter.

A simplified experiment without the time recorded is tested in this section. As Fig.3.17 (a)

shows, give an obstruction (the finger in this example) to block the fifth segment of the catheter

and place a target on the 3mm right-side of the catheter. Then use visual servoing control with

the estimated Jacobian matrix algorithm to guide the catheter reached the target. After the

catheter gets the target, the current bending angle and rotation angle can be calculated by

damped least square which are 𝛼𝛼 = 0.0002316 𝑟𝑟𝑟𝑟𝑟𝑟,𝛽𝛽 = 2.39862673 𝑟𝑟𝑟𝑟𝑟𝑟 in this example.

Through the camera, we can abstract the distance between the target and catheter tip so the

expected position after servoing control can be easily get as (3,0)mm in this example. Form

formula (1) the end-effector position in X-axis is 𝑙𝑙
𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) where 𝑙𝑙 is the length of

the catheter. The equation can be rewritten as:

𝑙𝑙 =
𝑃𝑃𝑥𝑥 × 𝛽𝛽

𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) × (1 − 𝑐𝑐𝑐𝑐 𝑠𝑠(𝛽𝛽)) =
3 × 2.39862673

𝑐𝑐𝑐𝑐𝑐𝑐(0.0002316) × (1 − 𝑐𝑐𝑐𝑐 𝑠𝑠(2.39862673)) = 4.1𝑚𝑚𝑚𝑚

Hence the length of the catheter with the contact force is 41mm. It can be seen from Fig.3.17

(b), the 41mm catheter corresponding to the original catheter with an obstruction in the fifth

segment of it.

4.1 System design 39

Chapter Ⅳ

Discussion

The demonstrated works aims to design, implement, and model a stepper motor driven soft

endoscopic robot that we called microDART and provide a solution for visual servoing

feedback control. Two different catheter designs have been developed, including disk cutting

and helix design. The helix design catheter was selected as the final structure to provide the

robot bending ability. A stepped motor actuated control system with Wi-Fi wireless

communication was introduced. A visual marker tracking program also has been developed and

implemented to provide the target and catheter position for visual servoing. The overall system

is integrated with an Arduino based microcontroller Teensy 4.1 with a Wi-Fi modular Node-

MCU ESP-6266 and a PC using program architecture developed by Python3. To generate

accurate motion of the microDART catheter, a kinematics model can map the relationship

among actuator space, joint space, and end-effector working space was introduced based on

constant curvature. To realize the visual servoing control, inverse kinematics can converge by

an error in the image that was developed based on damped least squares. Due to the requirement

of updating the Jacobian matrix in the inverse kinematics model, two different methods were

discussed, which are differential Jacobian matrix and estimated Jacobian matrix. The physical

robot has tested both algorithms for one generated rectangular trajectory and one visual target

each.

4.1 System design

4.1.1 Flexible Manipulator Design

As it is shown, the segmented soft robot design shows excellent performance in bending ability.

Both of the disks cut design and helix design in this project can be easy to drive by a steel cable.

The catheters are 3D printed with high-performance nylon by a Chinese company, which makes

it a highly cost-efficient product whose 3D printed price is 0.3 GBP for each. For the driven

4.1 System design 40

cable, there are three different kinds of materials tested, which are nylon cable, steel cable, and

steel cable with a plastic shell. After testing, the steel cable with shell was selected because of

the excellent bending performance and ability to shape memory.

The disk cut design is easy to be deformed into be an irregular shape, which will be hard to

find the control model. The helix design became the final choice served for this project. When

applied a strain by driven cable to the helix design catheter, the catheter showed a regular curve

shape. However, the longtime use of nylon based catheter will also cause deformation, which

could cause the inaccuracy problem in controlling..

4.1.2 Actuation

The cable-driven flexible robot system shows good quality in applications. The accuracy of

stepper motors is enough for this project. Because the stepper motor is a cycle moving actuator,

the movement of the catheter is non-linear. Especially for the base platform movement, it is

hard to find a suitable velocity and acceleration. The delay is quite long, with a small velocity

and acceleration, but the platform will shake a lot if there is a high value set to velocity and

acceleration.

4.1.3 Communication

The UDP shows a high communication speed, which is much higher than the serial port. Mainly

it is a wireless communication based on ethernet. Because the protocol does not consider the

data, there is almost no latency during the data receiving. This design shows that the wireless

control for microDART is possible. Hence, in the future, replacing the Wi-Fi modular by a 5G

chip can achieve the no distance limitation remote control. Nevertheless, because after the

Node-MCU received data, the connection between it and Teensy is still a serial port, the speed

cannot reach its highest limitation. Directly connecting the ESP-8266 modular to Teensy with

SPI Bus should be a right solution.

4.2 Image Sensing 41

4.2 Image Sensing

The image recognition algorithm shows an excellent performance, which can keep tracking the

position of catheter and target. However, it is highly influenced by ambient lighting conditions.

Once the system is set up, the frequencies can reach 39Hz with a 60 FPS raw video stream

input. The area and rotated rectangular detection can correctly extract the target and catheter

tip position. For the given applications, the catheter position extracted from the image almost

matched the inverse kinematics results.

Because the camera is placed on the multi-channel tube to monitor the whole catheter change,

however, the system is a monocular system that cannot measure the depth of the environment.

In this project, the catheter keeps contacting the target plane, which means the camera can only

consider the X-Y plane movement. Another problem is that when the catheter bends to Y-axis

negative direction, the catheter tip will be blocked by the catheter body. In this situation, the

detection algorithm cannot track the actual catheter tip position.

4.3 Forward Kinematics

The constant curvature forward kinematics provides a highly efficient solution to calculate the

position of catheter based on the driven cable difference. It gives a good mapping relationship

for the cable-driven soft robot among end-effector working space, joint space, and driven cable

space. The movement of the catheter under the guidance of the forward kinematics model is

very close to the expected target, as it can be seen in section 5.1. Because the camera cannot

get the information on Z-axis, there is compensation in the kinematics model to keep catheter

contacting with the target plane. Occasionally the control will show non-linear behavior. It is

considered as the initial position of control cable platform, which will cause the strain applied

to each direction of the catheter is different. From the transformation matrix formula(1), it is

easy to see the end-effector position inverse ratio to the catheter length. It is also noticed that

the distance tracked by the camera is always longer than the model result, which means the real

bent catheter length is shorter than the calculated one.

4.4 Inverse Kinematics 42

4.4 Inverse Kinematics

The damped least square inverse kinematics shows excellent performance in MATLAB

simulation. For the differential Jacobian matrix method, the maximum difference between

assigned and simulation end-effector position is less than 0.1mm. The error in the physical

experiment with the camera shows results with a slightly higher error than the simulation one.

The maximum deviation between the expected rectangular and experimental trajectory is about

3mm in X-direction and 2.4mm in Y-direction. For the estimated Jacobian matrix method, the

maximum error in simulation is 1.6 mm due to the oscillation in Y-axis at the beginning of the

movement. The maximum differences between simulation in MATLAB and image recognized

position are 5mm in X-axis and 3.5 mm in Y-direction. As section 6.3 described, the error could

form the initial driven cable position. Another reason could be the camera position change.

Because of the Z-axis compensation, the camera position will be closer to the target plane when

the catheter moves far away from the original position. As a result, the distance between the

start point and catheter in the image will be smaller.

4.5 Visual Servoing

Both of the differential Jacobian matrix and Estimated Jacobian matrix methods provided

satisfactory results in the visual servoing task. Especially, the differential Jacobian matrix

method can directly guide the catheter to move to the target. As section 5.4.1 which shows the

error between the target and catheter tip position on image keep dropping until less than 2mm.

Furthermore, the speed of converging to the target is also noticeable. The catheter only took

16-time iterations and got the target position. For the estimated Jacobian matrix, it needs time

to converge then find the right direction to the target. At the beginning of servoing control, it

moved in the opposite direction from the target, but it still found the target position after 38

times iterations. Even the estimated Jacobian matrix method performs worse than the

differential one. However, it is undeniable that it is a good algorithm because the bending

ability of the catheter is non-linear, as mentioned in previous sections. The estimated Jacobian

matrix with damped least squares inverse kinematics model provides us a solution to do visual

4.6 Applicability and further development 43

servoing without any pre-knowledge about the kinematics. Moreover, because there is no

requirement of kinematics the robot with a unknown external force still can be controlled by

the visual servoing algorithm. Then the contact location estimation was discussed and shown

great potential to detect the external force of the flexible robot manipulator.

4.6 Applicability and further development

In this report, the advanced maneuverability based on image feedback of the catheter tip in

Micro Dexterous Assistive Robotic Therapy (MicroDART) can follow given target locations.

In the practical surgery, given target marks will be made by the surgeon’s decision during an

MIS. According to an electromagnetic-guided endoscopic intracranial surgery for children, the

navigation position accuracy is 2-9mm and optoelectronic navigation ranges between 0.71–

3.51mm [46] and 0.7–4.4 mm [47]. All three systems only can give planning trajectory, which

still needs manual control to the endoscope. The measured accuracies of the visual servoing

algorithm in this project are 0.8-1.9mm for the differential Jacobian matrix method and 1.7-

4.7mm for the estimated Jacobian matrix. For the external contact location estimation, it can

give a rough position of the obstacle related to the robot manipulator. In the medical application,

it provides a possible solution for avoiding contact with patient body. Thus, this project

improved the traditional endoscopic surgery by providing actuators driven flexible endoscopic

robot with visual feedback servoing automatic control.

However, the measured position accuracy is excluding depth with the situation, which assumed

that the catheter tip kept contacting with target plane by a kinematics Z-axis compensation.

Considering the working environment size limitation, there cannot be a binocular vision on the

catheter. Besides, the Haptic feedback is another solution to guarantee the contact of the

catheter tip with the target plane and can guarantee the accuracy of force applied to the patient.

The haptic feedback is already available in King’s College London Hammer Lab.

Therefore, in the future, the microDART system with dual feedback control (visual servoing

and haptic feedback control) can give a more accurate endoscopic dissection surgery. It is well

known that a surgeon needs many years of training, so the automatic dissection endoscopic

robot system would address the shortage of doctors and reduce the difficulty of endoscopic

4.7 Conclusion 44

surgery. Moreover, the Wi-Fi modular in this project can be replaced by a 5G mobile controller.

After the implementation of the image and haptic data compression techniques can realize low

latency data transmission so that a hyper remote surgical system based on 5G can be developed.

This system can be applied in some impoverished areas where medical resources are sparse,

someplace without specialized surgeons like an ocean liner or the surgery for infectious disease.

It will make no difference between traditional surgery and this kind of hyper remote surgery

for the doctor because of the combination of imaging and haptic sensing.

4.7 Conclusion

The algorithm shows great potential of solving the cable-driven flexible robot visual servoing

problem. The project successfully provides a bendable catheter on a flexible robot and a highly

efficient low-cost actuation system based on stepper motors and steel cable. Furthermore, the

wireless communication system has been developed to provide a Wi-Fi-based UDP wireless

control. A kinematics model can map the working space, joint space, and driven space was

found to give an accuracy control, which assumes each joint on the catheter has the same

curvature. To realize the visual servoing control, damped least squares inverse kinematics was

used to calculate expected bending angle and rotation angle from the Jacobian matrix and the

error between target and catheter position. There are two methods, which are a differential

Jacobian matrix with 0.1 mm error and the estimated Jacobian matrix with 1.6mm error in

simulation. The system has also been tested physical robot visual servoing task, which shows

good results with error in 0.8-1.9mm for differential Jacobian matrix method and 1.7-4.7mm

for estimated Jacobian matrix. The contact location estimation can also give a correct position

of the obstacle. This project shows a high applicability of the endoscopic surgery which

automatically operated by a flexible robot under visual information guidance.

Reference 45

Reference

[1] Pearl JP, Ponsky JL. Natural orifice translumenal endoscopic surgery: a critical review. J
Gastrointest Surg. 2008;12: 1293–300.
[2] Trivedi, D., Rahn, C. D., Kier,W. M., andWalker, I. D. (2008). Soft robotics: Biological
inspiration, state of the art, and future research. Applied Bionics and Biomechanics,5(3):99–
117.
[3] WALKER I D, CARRERAS C, MCDONNELL R, et al. Extension versus bending for
continuum robots [J]. International Journal of Advanced Robotic Systems, 2006, 3(2): 171 -
178.
[4] GRAVAGNE I A, RAHN C D, WALKER I D. Large deflection dynamics and control for
planar continuum robots [J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(2): 299 - 307.
[5] WALKER I D, HANNAN M W. A novel ‘elephant’s trunk’ robot [C]//Proceedings of
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Sept. 19 - 23,
1999, Atlanta, USA. IEEE, 1999: 410 – 415.
[6] JONES B A, MCMAHAN W, WALKER I D. Design and analysis of a novel pneumatic
manipulator [c]//Proceedings of 3rd IFAC Symposium on Mechatronic Systems, Sept. 6 - 8,
2004, Sydney, Australia. 2004:745 – 750.
[7] JONES B A, MCMAHAN W, WALKER I D. Design and analysis of a novel pneumatic
manipulator [c]//Proceedings of 3rd IFAC Symposium on Mechatronic Systems, Sept. 6 - 8,
2004, Sydney, Australia. 2004: 745 - 750.
[8] MCMAHAN W, CHITRAKARAN V, CSENCSITS M, et al. Field trials and testing of the
OctArm continuum manipulator [C]//Proceedings of IEEE International Conference on
Robotics and Automation, May 15 - 19, 2006, Orlando, Florida. IEEE, 2006: 2336 - 2341.
[9] CHEN G, PHAM M T, REDARCE T, et al. Development and kinematic analysis of a
silicone rubber bending tip for colonoscopy[C]//Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and System, Oct. 9 - 15, 2006, Beijing, China. IEEE/RSJ,
2006: 168 – 173.
[10] CHEN G, PHAM M T, REDARCE T. Sensor -based guidance control of a continuum
robot for a semiautonomous colonoscopy [J]. Robotics and Autonomous System, 2009(57):
712 – 722.
[11] Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning
accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 1988
Feb;35(2):153–60.
[12] Kalloo AN, Singh VK, Jagannath SB, Niiyama H, Hill SL, Vaugh CA, et al. Flexible
transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the
peritoneal cavity. Gastrointest Endosc 2004;60(1):114e7.

Reference 46

[13] Phee SJ, Low SC, Huynh VA, Kencana ZL, Yang SK. Master and slave translumenal
endoscopic robot (MASTER) for natural orifice translumenal endo-scopic surgery (NOTES).
Conf Proc IEEE Eng Med Biol Soc 2009;4:1192e5.
[14] Phee SJ, Reddy N, Chiu PW, Rebala P, Rao GV, Wang Z, Sun Z, Wong JY, Ho KY. Robot-
assisted endoscopic submucosal dissection is effective in treating patients with early-stage
gastric neoplasia. Clin Gastroenterol Hepatol 2012; 10: 1117-1121.
[15] D. J. Abbott, C. Becke, R. I. Rothstein, W. J. Peine, "Design of an endoluminal NOTES
robotic system", Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 410-416, 2007.
[16] Rothstein RI, Ailinger RA, Peine W. Computer-assisted endoscopic robot system for
advanced therapeutic procedures. Gastrointest Endosc 2004;59(5):P113.
[17] Webster, R. J. & Jones, B. A. Design and kinematic modeling of constant curvature
continuum robots: a review. Int. J. Robot. Res. 29, 1661–1683 (2010).
[18] Rus, D. and Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature,
521(7553):467–475.
[19] JONES B A, WALKER I D. Kinematics for multisection continuum robots [J]. IEEE
Transactions on Robotics, 2006, 22(1): 43 - 55.
[20] JONES B A, WALKER I D. Practical kinematics for real-time implementation of
continuum robots [J]. IEEE Transactions on Robotics, 2006, 22(6): 1087 - 1099.
[21] Renda, F., Giorelli, M., Calisti, M., Cianchetti, M. & Laschi, C. Dynamic model of a multi-
bending soft robot arm driven by cables. IEEE Trans. Robot. 30, 1109–1122 (2014).
[22] Webster, R. J. & Jones, B. A. Design and kinematic modeling of constant curvature
continuum robots: a review. Int. J. Robot. Res. 29, 1661–1683 (2010).
[23] Neppalli, S., Csencsits, M. A., Jones, B. A. and Walker, I. D. (2009). Closed-form inverse
kinematics for continuum manipulators. Advanced Robotics, 23: 2077–2091.
[24] Sears, P. and Dupont, P. E. (2007). Inverse kinematics of concentric tube steerable needles.
IEEE International Conference on Robotics and Automation, pp. 1887–1892.
[25]Rucker, D. C. and Webster, R. J., III (2008). Mechanics-based modeling of bending and
torsion in active cannulas. IEEE RAS/EMBS International Conference on Biomedical Robotics
and Biomechatronics, pp. 704–709.
[26] E Malis, F Chaumette, S Boudet. 2 1/2 D visual servoing[J]. IEEE Transactions on
Robotics and Automation, 1999, 15(2): 238-250.
[27] Yanting Duan, Chensheng Cai, Pengfei Wang, Ning Wang, Ping Chen. Summary of
Development of Robot Vision Servo Technology [J]. ServoControl,2007(06):16-18.
[28] Chaumette, F., Hutchinson, S.: Visual servo control Part I: Basic approaches. IEEE Robot.
Autom. Mag. 13(4), 82–90 (2006).
[29] Chaumette, F., Hutchinson, S.: Visual servo control Part II: Advanced approaches. IEEE
Robot. Autom. Mag. 14(1), 109–118 (2007).
[30] G. Hu, W. Mackunis, N. Gans, W. E. Dixon, J. Chen, A. Behal, D.M. Dawson,
“Homography-Based Visual Servo Control with Imperfect Camera Calibration,” IEEE

Reference 47

Transactions on Automatic Control, vol. 54, no. 6, pp. 1318-1324, 2009.
[31] Y. H. Liu, H. Wang, C. Wang and K. Lam, “Uncalibrated visual servoing of robots using
a depth-Independent interaction matrix,” IEEE Trans. on Robotics, vol. 22, no. 4, pp.804-817,
2006.
[32]H. Wang, Y. H. Liu and D. Zhou, “Adaptive visual servoing using point and line features
with an uncalibrated eye-in-hand camera,” IEEE Trans. on Robotics, vol. 24, no. 4, pp. 843-
857, 2008.
[33]Y. H. Liu and H. Wang, “An adaptive controller for image-based visual servoing of robot
manipulators,” The 8th World Congress on Intelligent Control and Automation, pp. 988-993,
2010.
[34] Wang, H. et al. Visual servo control of cable-driven soft robotic manipulator. In Proc.
International Conference on Intelligent Robots and Systems 57–62 (2013).
[35] Suzuki, S. and Abe, K., Topological Structural Analysis of Digitized Binary Images by
Border Following. CVGIP 30 1, pp 32-46 (1985).
[36] Toussaint, Godfried T. (1983). "Solving geometric problems with the rotating calipers".
Proc. MELECON '83, Athens. CiteSeerX 10.1.1.155.5671.
[37] Y. Tian, S. Yang, H. Geng, W. Wang and L. Li, "Kinematic modeling of the constant
curvature continuum line drive robot", 2016 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pp. 289-294, Dec 2016.
[38] S. R. Buss. "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse
and Damped Least Squares Methods." Typeset manuscript. Available from World Wide Web
(http://math.ucsd.edu/~sbuss/ResearchWeb/), 2004.
[39] Y. Nakamura and H. Hanafusa, Inverse kinematics solutions with singularity robustness
for robot manipulator control, Journal of Dynamic Systems, Measurement, and Control, 108
(1986), pp. 163{171.
[40] C. W. Wampler, Manipulator inverse kinematic solutions based on vector formulations
and damped least squares methods, IEEE Transactions on Systems, Man, and Cybernetics, 16
(1986), pp. 93{101.
[41] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems. Englewood Cliffs, N.
J.: Prentice-Hall, 1974.
[42] M. Shahamiri and M. Jagersand, "Uncalibrated visual servoing using a biased Newton
method for on-line singularity detection and avoidance", Proc. IEEE/RSJ Int. Conf. Int. Rob.
Syst., pp. 3953-3958, 2005.
[43] M. Jagersand, “Visual Servoing using trust Region Methods and Estimation of the Full
Coupled Visual-Motor Jacobian”, In Proc. Of IASTED Application of Control and Robotics,
pp. 105-108, 1996.
[44] M. Jagersand, “Imaged Based Visual Simulation and Tele-Assisted Robot Control”,
Workshop on Recent Trends in Visual Servoing, IROS, 1997.
[45] B. H. Yoshimi, P. K. Allen “Active Uncalibrated Visual servoing”, IEEE Int. Conference

Reference 48

on Robotics and Automation, pp. 156-161, 1993.
[46] Rosenow JM, Sootsman WK (2007) Application accuracy of an electromagnetic field-
based image-guided navigation system. Stereotact Funct Neurosurg 85:75–81.
[47] Barszcz S, Roszkowski M, Daszkiewicz P, Jurkiewicz E, Maryniak A (2007) Accuracy of
intraoperative registration during electromagnetic neuronavigation in intracranial procedures
performed in children. Neurol Neurochir Pol 41:122–127.
[48] Wang Z, Sun Z, Phee SJ. Haptic feedback and control of a flexible surgical endoscopic
robot. Comput Methods Programs Biomed 2013; 112: 260-271 [PMID: 23561289 DOI:
10.1016/j.cmpb.2013.01.018.

1. Arduino 49

Appendix

Source Code

1. Arduino

#include <Keyboard.h>

#include <string>

#include <sstream>

#include <math.h>

#include <AccelStepper.h>

//*** CONSTANTS ***

const bool IS_USE_LIMITS = true;

const int XY_MM_LIMIT [2] = { 25 , 30 }; // +-mm from original position, [Soft limit, hard limit]

const int Z_MM_LIMIT [2] = { 1500 , 120 }; // +/0

const float XY_STEP_TO_MM_RATIO = 0.0026;

const float Z_STEP_TO_MM_RATIO = 0.0152;

const float POSITION_TOLERANCE_MM = 0.0; //0.75; // +-

const int MAX_SPEED = 8000; //500; // The desired maximum speed in steps per second. Speeds of more than

1000 steps per second are unreliable.

const int MAX_ACCELERATION = 10000; // The desired acceleration in steps per second per second.

AccelStepper stepper1(AccelStepper::DRIVER, 1, 2); // Stepper motor 1 - Top Left - UP

1. Arduino 50

AccelStepper stepper2(AccelStepper::DRIVER, 3, 4); // Stepper motor 2 - Top Right

AccelStepper stepper3(AccelStepper::DRIVER, 5, 6); // Stepper motor 3 - Bottom Right - DOWN

AccelStepper stepper4(AccelStepper::DRIVER, 7, 8); // Stepper motor 4 - Bottom Left

AccelStepper stepperC(AccelStepper::DRIVER, 9, 10); // Stepper motor C - Center (Translation/Z)

void runSteppers() {

 stepper1.run();

 stepper3.run();

 stepper2.run();

 stepper4.run();

 stepperC.run();

}

void setTargets(float abs_target_mm[5])

{

 long abs_target_steps[5];

 abs_target_steps[0] = floor(abs_target_mm[0] / XY_STEP_TO_MM_RATIO);

 abs_target_steps[1] = floor(abs_target_mm[1] / XY_STEP_TO_MM_RATIO);

 abs_target_steps[2] = floor(abs_target_mm[2] / XY_STEP_TO_MM_RATIO);

 abs_target_steps[3] = floor(abs_target_mm[3] / XY_STEP_TO_MM_RATIO);

 abs_target_steps[4] = floor(abs_target_mm[4] / Z_STEP_TO_MM_RATIO);

 // Apply position tolerance and set target positions

1. Arduino 51

 if(abs(stepper1.targetPosition()-abs_target_steps[0]) >

floor(POSITION_TOLERANCE_MM/XY_STEP_TO_MM_RATIO)) {

 stepper1.moveTo(abs_target_steps[0]);

 }

 if(abs(stepper2.targetPosition()-abs_target_steps[1]) >

floor(POSITION_TOLERANCE_MM/XY_STEP_TO_MM_RATIO)) {

 stepper2.moveTo(abs_target_steps[1]);

 }

 if(abs(stepper3.targetPosition()-abs_target_steps[2]) >

floor(POSITION_TOLERANCE_MM/XY_STEP_TO_MM_RATIO)) {

 stepper3.moveTo(abs_target_steps[2]);

 }

 if(abs(stepper4.targetPosition()-abs_target_steps[3]) >

floor(POSITION_TOLERANCE_MM/XY_STEP_TO_MM_RATIO)) {

 stepper4.moveTo(abs_target_steps[3]);

 }

 if(abs(stepperC.targetPosition()-abs_target_steps[4]) >

floor(POSITION_TOLERANCE_MM/Z_STEP_TO_MM_RATIO)) {

 stepperC.moveTo(-1*abs_target_steps[4]);

 }

}

void setup() {

 Serial.begin(9600);

1. Arduino 52

 stepper1.setMaxSpeed(MAX_SPEED);

 stepper1.setAcceleration(MAX_ACCELERATION);

 stepper2.setMaxSpeed(MAX_SPEED);

 stepper2.setAcceleration(MAX_ACCELERATION);

 stepper3.setMaxSpeed(MAX_SPEED);

 stepper3.setAcceleration(MAX_ACCELERATION);

 stepper4.setMaxSpeed(MAX_SPEED);

 stepper4.setAcceleration(MAX_ACCELERATION);

 stepperC.setMaxSpeed(10000); //20000

 stepperC.setAcceleration(10000); //10000

}

bool data_flag=false;

void loop() {

 bool reset_flag=false;

 String intchars="";

 float setting_motor[5];

 int index=0;

 while(Serial.available()>0)

 {

 char inchar=Serial.read();

1. Arduino 53

 if(inchar == 's')

 {

 char *motor_info = &String("Stepper positions: "

 + String(stepper1.currentPosition()) + " " + String(stepper2.currentPosition()) + " " +

String(stepper3.currentPosition()) + " " + String(stepper4.currentPosition()) + " " +

String(stepperC.currentPosition()) + ".")[0];

 Serial.println(motor_info);

 break;

 }

 if(inchar =='r')

 {

 data_flag=true;

 reset_flag=true;

 break;

 }

 if(inchar != ',' and inchar != '&')

 {

 intchars+=inchar;

 }

 if(inchar == ',')

 {

 setting_motor[index]=intchars.toFloat();

1. Arduino 54

 index++;

 intchars="";

 }

 if(inchar =='&')

 {

 char *re_command = &String("Command: "

 + String(setting_motor[0]) + " " + String(setting_motor[1]) + " " +

String(setting_motor[2]) + " " + String(setting_motor[3]) +" " + String(setting_motor[4]) + ".")[0];

 Serial.println(re_command);

 data_flag=true;

 break;

 }

 }

 if(data_flag)

 {

 if(reset_flag==true)

 {

 Serial.println("Reset");

 stepper1.moveTo(0);

 stepper2.moveTo(0);

 stepper3.moveTo(0);

 stepper4.moveTo(0);

 stepperC.moveTo(0);

1. Arduino 55

 reset_flag=false;

 }

 else

 {

 float abs_target_mm[5];

 abs_target_mm[0] = setting_motor[0];

 abs_target_mm[1] = setting_motor[1];

 abs_target_mm[2] = setting_motor[2];

 abs_target_mm[3] = setting_motor[3];

 abs_target_mm[4] = setting_motor[4];

 abs_target_mm[0] = min(max(abs_target_mm[0],-1*XY_MM_LIMIT[0]) , XY_MM_LIMIT[0]);

 abs_target_mm[1] = min(max(abs_target_mm[1],-1*XY_MM_LIMIT[0]) , XY_MM_LIMIT[0]);

 abs_target_mm[2] = min(max(abs_target_mm[2],-1*XY_MM_LIMIT[0]) , XY_MM_LIMIT[0]);

 abs_target_mm[3] = min(max(abs_target_mm[3],-1*XY_MM_LIMIT[0]) , XY_MM_LIMIT[0]);

 abs_target_mm[4] = min(max(abs_target_mm[4],0) , Z_MM_LIMIT[0]);

 setTargets(abs_target_mm);

 char *motor_info = &String("Move to: "

 + String(stepper1.targetPosition()) + " " + String(stepper2.targetPosition()) + " " +

String(stepper3.targetPosition()) + " " + String(stepper4.targetPosition()) + " " +

String(stepperC.targetPosition()) + ".")[0];

 Serial.println(motor_info);

 }

 data_flag=false;

2. Simulation Code - MATLAB 56

 }

 runSteppers();

 delay(0.1);

}

2. Simulation Code - MATLAB

2.1 working_space.m

clc;

clear all;

length=56;

i=1;

r=1.8

for alpha=0:0.01:2*pi

 for beta= 0:0.01:pi

 ux(i)=cos(alpha)^2*cos(beta)+sin(alpha);

 uy(i)=cos(alpha)*sin(alpha)*cos(beta);

 uz(i)=-cos(alpha)*sin(beta);

 vx(i)=cos(alpha)*sin(alpha+beta)-cos(alpha)*sin(beta);

 vy(i)=sin(alpha)^2*cos(beta)+ cos(beta)^2;

 vz(i)=-sin(alpha)*sin(beta);

 wx(i)=cos(alpha)*sin(beta);

2. Simulation Code - MATLAB 57

 wy(i)= sin(alpha)*sin(beta);

 wz(i)= cos(beta);

 tx(i)= (length/beta)*cos(alpha)*(1-cos(beta));

 ty(i)=(length/beta)*sin(alpha)*(1-cos(beta));

 tz(i)=(length/beta)*sin(beta);

 l1(i)=r*beta*cos(alpha);

 l2(i)=r*beta*cos(alpha-pi/2);

 l3(i)=r*beta*cos(alpha-pi);

 l4(i)=r*beta*cos(alpha-3*pi/2);

 i=i+1;

 end

end

for index=1:1:i-1

 T(:,:,index)=[ux(index) vx(index) wx(index) tx(index);uy(index) vy(index) wy(index) ty(index);uz(index)

vz(index) wz(index) tz(index);0 0 0 1];

end

end_effctor = [0 0 0 1];

end_effctor.*T(:,:,1)

for index=1:1:i-1

 result_temp(:,:,index)= end_effctor.*T(:,:,index);

 result(:,1,index) = result_temp(1:3,4,index);

2. Simulation Code - MATLAB 58

 x(:,index)=result(1,1,index);

 y(:,index)=result(2,1,index);

 z(:,index)=result(3,1,index);

end

figure(1)

plot3(x,y,z);

title("MicroDART End-effecter Working Space (Constant Curvature)")

xlabel("x/mm")

ylabel("y/mm")

zlabel("z/mm")

patch(x,y,z,z,'edgecolor','flat','facecolor','none')

view(3)

grid on;

figure(2)

plot3(tx,ty,tz);

title("MicroDART End-effecter Working Space (Constant Curvature)")

xlabel("x/mm")

ylabel("y/mm")

zlabel("z/mm")

patch(x,y,z,z,'edgecolor','flat','facecolor','none')

view(3)

grid on;

2. Simulation Code - MATLAB 59

2.2 simulation.m

clear; clc;

close all

%% target generation

t=1;

for x1=0:-1:-30

 target_p(:,t)=[x1 0 56];

 t=t+1;

end

for y1=1:1:15

 target_p(:,t)=[-30 y1 56];

 t=t+1;

end

for x2=-29:1:30

 target_p(:,t)=[x2 15 56];

 t=t+1;

end

for y2=14:-1:0

 target_p(:,t)=[30 y2 56];

 t=t+1;

end

2. Simulation Code - MATLAB 60

for x3=29:-1:0

 target_p(:,t)=[x3 0 56];

 t=t+1;

end

%% initialization

length=55;

lamba=0.5; % damping coefficient of Jacobain inverse

angle_change=[0.01,0.01];

angle_diff=[0.001,0.002];

angle_change=angle_change+angle_diff;

position_changed = Forward(length,angle_change(1),angle_change(2))

position_pre = position_changed;

Jac_estimate=Jacobian(length,angle_change(1),angle_change(2))

%% literation

for i=1:t

 diff_t=target_p(1:2,i)-position_changed;

 angle_diff =Jac_estimate'*inv(Jac_estimate*Jac_estimate'+lamba*eye(2))*diff_t; %jacobian with

dampping

 angle_change=angle_change+angle_diff';

 position_changed = Forward(length,angle_change(1),angle_change(2));

 changing = position_changed-position_pre;

 update_p(i,:)=position_changed;

 error_n= target_p(1:2,i)-position_changed

2. Simulation Code - MATLAB 61

 error = sqrt(error_n(1)^2+error_n(2)^2);

 error_plot(i)=[error];

 error_plotxy(i,:)=[error_n(1),error_n(2)];

 Jac_estimate = est_Jac(Jac_estimate, angle_diff, changing);

 %Jac_estimate = Jacobian(length,angle_change(1),angle_change(2))

 position_pre = position_changed;

 update_p(i,:)=position_pre;

 figure(1)

 plot(error_plot,'r-','LineWidth',2);

 axis([0 150 -0.2 2])

 %title('(c) Total error in [x,y] over time','position',[50 -0.6]);

 ylabel('Displacement [mm]');

 xlabel("Time [s]");

 grid on

 drawnow;

 if i>95

 print('EJ','-dpdf','-r600');

 end

 subplot(1,2,1)

 plot(target_p(1,:),'b-','LineWidth',1.5);

 hold on

 plot(update_p(:,1),'r--','LineWidth',1.5);

2. Simulation Code - MATLAB 62

 axis([0 150 -32 32])

 xlabel("Time [s]");

 ylabel('Displacement in x [mm]');

 legend('Trajectory','Experiment','location','southeast')

 grid on

 drawnow;

 subplot(1,2,2)

 plot(target_p(2,:),'b-','LineWidth',1.5);

 hold on

 plot(update_p(:,2),'r--','LineWidth',1.5);

 axis([0 150 -5 16])

 xlabel("Time [s]");

 ylabel('Displacement in y [mm]');

 legend('Trajectory','Experiment','location','southeast')

 grid on

 drawnow;

 if i>149

 print('EJ_xy','-dpdf','-r600');

 end

end

2.3 forward_kinematics.m

2. Simulation Code - MATLAB 63

function P = Forward(length,alpha,beta)

 if beta==0

 tx= (length)*cos(alpha)*(1-cos(beta));

 ty=(length)*sin(alpha)*(1-cos(beta));

 %tz=(length)*sin(beta);

 else

 tx= (length/beta)*cos(alpha)*(1-cos(beta));

 ty=(length/beta)*sin(alpha)*(1-cos(beta));

 %tz=(length/beta)*sin(beta);

 end

 %P=[tx; ty; tz];

 P=[tx; ty;]% tz];

end

2.4 Jacobian.m

function J=Jacobian(L,A,B)

J=[(L*sin(A)*(cos(B) - 1))/B (L*cos(A)*sin(B))/B + (L*cos(A)*(cos(B) - 1))/B^2;

 -(L*cos(A)*(cos(B) - 1))/B (L*sin(A)*(cos(B) - 1))/B^2 + (L*sin(A)*sin(B))/B];

 %0 (L*cos(B))/B - (L*sin(B))/B^2];

end

2.5 estimat_jacobian.m

function Jac_estimation = est_Jac(Jac_e_prev, d_q, d_p)

kappa = 0.2;

3. Robot Control – Python 64

temp1= d_p-(Jac_e_prev*d_q)

d_q'

temp2=temp1*d_q'

ov = d_q'*d_q

temp3=kappa*temp2/ov

temp3+Jac_e_prev

Jac_estimation = (kappa*(((d_p-(Jac_e_prev*d_q))*d_q')/(d_q'*d_q)))+Jac_e_prev;

3. Robot Control – Python

3.1 MicroDART.py

import numpy as np

import math

class MicroDART:

 def __init__(self,L):

 self.length = L

 print("MicroDART Created, Catheter Length",L,"mm")

 def forward(self,alpha,beta):

 tx=(self.length/beta)*math.cos(alpha)*(1-math.cos(beta))

 ty=(self.length/beta)*math.sin(alpha)*(1-math.cos(beta))

 tz=(self.length/beta)*math.sin(beta)

 return np.array([tx,ty,tz])

3. Robot Control – Python 65

 def jacobian(self,alpha,beta):

 J11= (self.length*math.sin(alpha)*(math.cos(beta) - 1))/beta

 J12= (self.length*math.cos(alpha)*math.sin(beta))/beta +

(self.length*math.cos(alpha)*(math.cos(beta) - 1))/math.pow(beta,2)

 J_1=np.array([J11,J12])

 J21= -(self.length*math.cos(alpha)*(math.cos(beta) - 1))/beta

 J22= (self.length*math.sin(alpha)*(math.cos(beta) - 1))/math.pow(beta,2) +

(self.length*math.sin(alpha)*math.sin(beta))/beta

 J_2=np.array([J21,J22])

 J31=0

 J32=(self.length*math.cos(beta))/beta - (self.length*math.sin(beta))/pow(beta,2)

 J_3=np.array([J31,J32])

 return np.array([J_1,J_2,J_3])

 def forward_noZ(self,alpha,beta):

 tx=(self.length/beta)*math.cos(alpha)*(1-math.cos(beta))

 ty=(self.length/beta)*math.sin(alpha)*(1-math.cos(beta))

 #tz=(self.length/beta)*math.sin(beta)

 return np.array([tx,ty])

 def jacobian_noZ(self,alpha,beta):

 J11= (self.length*math.sin(alpha)*(math.cos(beta) - 1))/beta

3. Robot Control – Python 66

 J12= (self.length*math.cos(alpha)*math.sin(beta))/beta +

(self.length*math.cos(alpha)*(math.cos(beta) - 1))/math.pow(beta,2)

 J_1=np.array([J11,J12])

 J21= -(self.length*math.cos(alpha)*(math.cos(beta) - 1))/beta

 J22= (self.length*math.sin(alpha)*(math.cos(beta) - 1))/math.pow(beta,2) +

(self.length*math.sin(alpha)*math.sin(beta))/beta

 J_2=np.array([J21,J22])

 return np.array([J_1,J_2])

 def wire_change(self,alpha,beta):

 radius=2.8

 l1=radius*beta*math.cos(alpha) #l

 l2=radius*beta*math.cos(alpha-math.pi/2) #u

 l3=radius*beta*math.cos(alpha-math.pi) #r

 l4=radius*beta*math.cos(alpha-3*math.pi/2) #d

 return [-l2,-l4,l1,l3,self.z_displace(alpha,beta)]

 def z_displace(self,alpha,beta):

 return self.length-(self.length/beta)*math.sin(beta)

 def est_jac(self,jac_pre,angle_diff,changing):

 kappa = 0.2

 temp1 = changing-np.matmul(jac_pre,angle_diff)

3. Robot Control – Python 67

 angle_diff=np.array([[angle_diff[0],angle_diff[1]]])

 temp1 = np.array([[temp1[0]],[temp1[1]]])

 temp2 = np.matmul(temp1,angle_diff)

 temp3 = temp2/np.matmul(angle_diff,angle_diff.T)

 Jac_estimation = (kappa*temp3)+jac_pre

 print("ov",np.matmul(angle_diff,angle_diff.T))

 print("J:",Jac_estimation)

 return Jac_estimation

 def cable2angle(self,cable_change):

 radius=2.8

 alpha = math.atan(-(-cable_change[0]/cable_change[1]))

 beta = (cable_change[1])/(radius*math.cos(alpha))

 return [alpha,beta]

3.2 ractangular.py

import numpy as np

import MicroDART

import serial

from matplotlib import pyplot as plt

def withZ():

 robot = MicroDART.MicroDART(50)

3. Robot Control – Python 68

 ## targets

 target_list = []

 for x1 in range(0,-11,-1):

 target_list.append(np.array([x1,0,56]))

 for y1 in range(1,11,1):

 target_list.append(np.array([-10,y1,56]))

 for x2 in range(-9,11,1):

 target_list.append(np.array([x2,10,56]))

 for y2 in range(9,-1,-1):

 target_list.append(np.array([10,y2,56]))

 for x3 in range(9,-1,-1):

 target_list.append(np.array([x3,0,56]))

 target_array=np.array(target_list)

 ## initialization

 lengeth = 50

 lamda = 0.5

 angle_change=np.array([0.01,0.01])

 angle_diff=np.array([0.001,0.002])

 angle_change=angle_change+angle_diff

 position_changed=robot.forward(angle_change[0],angle_change[1]) # initial position

 position_pre = position_changed # save position

3. Robot Control – Python 69

 jac_estimate=robot.jacobian(angle_change[0],angle_change[1])

 fig, ax = plt.subplots(figsize=(8,4))

 draw_temp=[]

 draw_result=[]

 ## Run

 for loop in range(np.shape(target_array)[0]):

 diff_target = target_array[loop]-position_changed

 temp=np.matmul(jac_estimate,jac_estimate.T)+lamda*np.identity(3)

 angle_diff = np.matmul(np.matmul(jac_estimate.T,np.linalg.inv(temp)),diff_target)

 angle_change=angle_change+angle_diff

 position_changed = robot.forward(angle_change[0],angle_change[1])

 changing = position_changed-position_pre;

 jac_estimate = robot.jacobian(angle_change[0],angle_change[1])

 position_pre = position_changed

 draw_result.append(position_changed)

 draw_temp.append(target_array[loop])

 for point in draw_temp:

 ax.plot(point[0],point[1],'ro')

 for point in draw_result:

 ax.plot(point[0],point[1],'g*')

 ax.set_xlim(-11,11)

 ax.set_ylim(-1,11)

3. Robot Control – Python 70

 plt.draw()

 plt.pause(0.5)

def withoutZ():

 length = 55

 port=serial.Serial("/dev/ttyACM0",9600,timeout=0.5)

 robot = MicroDART.MicroDART(length)

 ## targets

 target_list = []

 for x1 in range(0,-31,-1):

 target_list.append(np.array([x1,0]))

 for y1 in range(1,21,1):

 target_list.append(np.array([-30,y1]))

 for x2 in range(-29,31,1):

 target_list.append(np.array([x2,20]))

 for y2 in range(19,-1,-1):

 target_list.append(np.array([30,y2]))

 for x3 in range(29,-1,-1):

 target_list.append(np.array([x3,0]))

 target_array=np.array(target_list)

 ## initialization

 lamda = 0.5

3. Robot Control – Python 71

 angle_change=np.array([0.01,0.01])

 angle_diff=np.array([0.001,0.002])

 angle_change=angle_change+angle_diff

 position_changed=robot.forward_noZ(angle_change[0],angle_change[1]) # initial position

 position_pre = position_changed # save position

 jac_estimate=robot.jacobian_noZ(angle_change[0],angle_change[1])

 fig, (ax,ax2) = plt.subplots(1,2,figsize=(12,4))

 ## Run

 estemate = False

 for loop in range(np.shape(target_array)[0]):

 diff_target = target_array[loop]-position_changed

 #print(diff_target,"=",target_array[loop],"-",position_changed)

 temp=np.matmul(jac_estimate,jac_estimate.T)+lamda*np.identity(2)

 angle_diff = np.matmul(np.matmul(jac_estimate.T,np.linalg.inv(temp)),diff_target)

 #print("A:",angle_change,"+",angle_diff)

 angle_change=angle_change+angle_diff

 #print("A_new",angle_change)

 position_changed = robot.forward_noZ(angle_change[0],angle_change[1])

 changing = position_changed-position_pre

 if estemate is True:

 jac_estimate=robot.est_jac(jac_estimate,angle_diff,changing)

 else:

3. Robot Control – Python 72

 jac_estimate = robot.jacobian_noZ(angle_change[0],angle_change[1])

 position_pre = position_changed

 # draw

 ax.plot(target_array[loop][0],target_array[loop][1],'g*')

 ax.set_xlim(-35,35)

 ax.set_ylim(-30,30)

 ax.set_title('Target')

 ax2.plot(position_changed[0],position_changed[1],'r.')

 ax2.set_title('MicroDART')

 ax2.set_xlim(-35,35)

 ax2.set_ylim(-30,30)

 plt.draw()

 # control

 wires = robot.wire_change(angle_change[0],angle_change[1])

 plt.pause(0.2)

 command = "%5f,%5f,%5f,%5f,%5f,&"%(wires[0],wires[1],wires[2],wires[3],wires[4])

 print(command)

print("%5f,%5f,%5f,%5f,%5f,&"%(wires[0]/0.0026,wires[1]/0.0026,wires[2]/0.0026,wires[3]/0.0026,wires[4])

)

 port.write(command.encode('utf-8'))

 port.write("0,0,0,0,0&".encode('utf-8'))

3. Robot Control – Python 73

 port.close()

withoutZ()

3.3 keyboard.py

from evdev import InputDevice

from select import select

import numpy as np

import threading

import MicroDART

import serial

up_flag = False

down_flag=False

left_flag=False

right_flag=False

reset_flag = False

forward_flag = False

back_flag = False

#cat /proc/bus/input/devices

def detectInputKey():

 global up_flag,down_flag,left_flag,right_flag,reset_flag,forward_flag,back_flag

 dev = InputDevice('/dev/input/event3')

3. Robot Control – Python 74

 while True:

 select([dev],[],[])

 for event in dev.read():

 if event.type == 1: # Keyboard

 if event.code == 72: # key-8-up

 if event.value == 2: # move

 up_flag=True

 elif event.value == 0: # stop

 up_flag=False

 elif event.code== 80: #key 2 down

 if event.value == 2: # move

 down_flag=True

 elif event.value == 0: # stop

 down_flag=False

 elif event.code== 75: #key 4 left

 if event.value == 2: # move

 left_flag=True

 elif event.value == 0: # stop

 left_flag=False

 elif event.code== 77: #key 6 right

 if event.value == 2: # move

 right_flag=True

3. Robot Control – Python 75

 elif event.value == 0: # stop

 right_flag=False

 elif event.code ==19:

 if event.value == 1:

 reset_flag = True

 elif event.code ==78:

 if event.value == 2:

 forward_flag=True

 elif event.value == 0 :

 forward_flag=False

 elif event.code ==74:

 if event.value == 2:

 back_flag=True

 elif event.value == 0 :

 back_flag=False

def control():

 global up_flag,down_flag,left_flag,right_flag,reset_flag,forward_flag,back_flag

 wire = np.array([0.001,0.001,0.001],dtype=float)

 speed = 0.000008

 speed_base = 0.001

 count = 0

3. Robot Control – Python 76

 port=serial.Serial("/dev/ttyACM0",9600,timeout=0.5)

 length = 50

 robot = MicroDART.MicroDART(length)

 z_displace = 0

 show_calcu= True

 while True:

 count =count+1

 if up_flag is True:

 wire[0]=wire[0]+speed

 elif down_flag is True:

 wire[0]=wire[0]-speed

 elif left_flag:

 wire[1]=wire[1]-speed

 elif right_flag:

 wire[1]=wire[1]+speed

 elif forward_flag:

 wire[2]=wire[2]+speed_base

 elif back_flag:

 wire[2]=wire[2]-speed_base

 if wire[2] < 0:

 wire[2]=0

3. Robot Control – Python 77

 angle_change = robot.cable2angle(wire)

 z_displace = robot.z_displace(angle_change[0],angle_change[1])

 if reset_flag:

 print("Reset")

 command = "%5f,%5f,%5f,%5f,%5f,&"%(0,0,0,0,0)

 print("Command: ",command)

 port.write(command.encode('utf-8'))

 reset_flag = False

 wire = np.array([0.001,0.001,0.001],dtype=float)

 if count == 8000:

 print(wire)

 command = "%5f,%5f,%5f,%5f,%5f,&"%(-wire[0],wire[0],wire[1],-wire[1],wire[2]+z_displace)

 print("Command: ",command)

 if show_calcu:

 print("angles:",angle_change)

 print("positions:",robot.forward_noZ(angle_change[0],angle_change[1]))

 port.write(command.encode('utf-8'))

 count = 0;

if __name__=='__main__':

3. Robot Control – Python 78

 t1 = threading.Thread(target=detectInputKey)

 t2 = threading.Thread(target=control)

 t1.start()

 t2.start()

3.4 joystick.py

from evdev import InputDevice

from select import select

import numpy as np

import threading

import MicroDART

import serial

up_flag = False

down_flag=False

left_flag=False

right_flag=False

reset_flag = False

forward_flag = False

back_flag = False

#cat /proc/bus/input/devices

3. Robot Control – Python 79

def detectInputKey():

 global up_flag,down_flag,left_flag,right_flag,reset_flag,forward_flag,back_flag

 dev = InputDevice('/dev/input/event26')

 while True:

 select([dev],[],[])

 for event in dev.read():

 if event.type == 3:

 if event.code == 1:

 if event.value == 0: # move

 up_flag=True

 elif event.value == 2:

 down_flag=True

 elif event.value == 1: # stop

 up_flag=False

 down_flag=False

 elif event.code== 0: #key 4 left

 if event.value == 0: # move

 left_flag=True

 elif event.value == 2: # stop

 right_flag=True

3. Robot Control – Python 80

 elif event.value == 1: # stop

 left_flag=False

 right_flag=False

 elif event.type ==1:

 if event.code ==311:

 if event.value == 1:

 forward_flag=True

 elif event.value == 0 :

 forward_flag=False

 elif event.code ==310:

 if event.value == 1:

 back_flag=True

 elif event.value == 0 :

 back_flag=False

 elif event.code ==305:

 if event.value == 1:

 reset_flag = True

def control():

 global up_flag,down_flag,left_flag,right_flag,reset_flag,forward_flag,back_flag

 wire = np.array([0.0001,0.0001,0.0001],dtype=float)

3. Robot Control – Python 81

 speed = 0.000005

 speed_base = 0.001

 count = 0

 port=serial.Serial("/dev/ttyACM0",9600,timeout=0.5)

 length = 55

 robot = MicroDART.MicroDART(length)

 z_displace = 0

 while True:

 count =count+1

 if up_flag is True:

 wire[0]=wire[0]+speed

 elif down_flag is True:

 wire[0]=wire[0]-speed

 elif left_flag:

 wire[1]=wire[1]-speed

 elif right_flag:

 wire[1]=wire[1]+speed

 elif forward_flag:

 wire[2]=wire[2]+speed_base

 elif back_flag:

 wire[2]=wire[2]-speed_base

 if wire[2] < 0:

3. Robot Control – Python 82

 wire[2]=0

 angle_change = robot.cable2angle(wire)

 z_displace = robot.z_displace(angle_change[0],angle_change[1])

 if reset_flag:

 print("Reset")

 command = "%5f,%5f,%5f,%5f,%5f,&"%(0,0,0,0,0)

 print("Command: ",command)

 port.write(command.encode('utf-8'))

 reset_flag = False

 wire = np.array([0.001,0.001,0.001],dtype=float)

 if count == 8000:

 print(wire)

 command = "%5f,%5f,%5f,%5f,%5f,&"%(-wire[0],wire[0],wire[1],-wire[1],wire[2]+z_displace)

 print("Command: ",command)

 port.write(command.encode('utf-8'))

 count = 0;

if __name__=='__main__':

 t1 = threading.Thread(target=detectInputKey)

3. Robot Control – Python 83

 t2 = threading.Thread(target=control)

 t1.start()

 t2.start()

3.5 servoing.py

import cv2

import numpy as np

import MicroDART

import serial

from matplotlib import pyplot as plt

def targetDetector_p(src):

 x_r=0

 y_r=0

 x_b=0

 y_b=0

 b,g,r=cv2.split(src)

 ret,b = cv2.threshold(b,80,255,cv2.THRESH_BINARY)

 ret,g = cv2.threshold(g,100,255,cv2.THRESH_BINARY)

 ret,r = cv2.threshold(r,30,255,cv2.THRESH_BINARY)

 binery_r=r-b

 ret,binery_r = cv2.threshold(binery_r,50,255,cv2.THRESH_BINARY)

3. Robot Control – Python 84

 erotion = cv2.erode(binery_r,np.ones((4,4),np.uint8))

 dilation= cv2.dilate(erotion,np.ones((6,6),np.uint8))

 #cv2.imshow("red",dilation)

 contours, hierarchy =

cv2.findContours(dilation,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

 for contour in contours:

 area = cv2.contourArea(contour)

 if area>500 and area<1500:

 rect = cv2.minAreaRect(contour)

 box = cv2.boxPoints(rect)

 x_r=np.int0((box[0][0]+box[1][0]+box[2][0]+box[3][0])/4)

 y_r=np.int0((box[0][1]+box[1][1]+box[2][1]+box[3][1])/4)

 #cv2.drawContours(src, [box], 0, (255, 0, 0), 2)

 cv2.circle(src, (x_r, y_r), 3, (0, 0, 255), 2)

 binery_b=b-r

 ret,binery_b = cv2.threshold(binery_b,50,255,cv2.THRESH_BINARY)

 erotion_b = cv2.erode(binery_b,np.ones((6,6),np.uint8))

 dilation_b= cv2.dilate(erotion_b,np.ones((6,6),np.uint8))

 #cv2.imshow("blue",dilation_b)

 contours_b, hierarchy_b =

cv2.findContours(dilation_b,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

 for contour in contours_b:

 area = cv2.contourArea(contour)

3. Robot Control – Python 85

 if area>500 and area<2000:

 rect = cv2.minAreaRect(contour)

 box = cv2.boxPoints(rect)

 x_b=np.int0((box[0][0]+box[1][0]+box[2][0]+box[3][0])/4)

 y_b=np.int0((box[0][1]+box[1][1]+box[2][1]+box[3][1])/4)

 #cv2.drawContours(src, [box], 0, (255, 0, 0), 2)

 cv2.circle(src, (x_b, y_b), 3, (255, 0, 0), 2)

 cv2.imshow("target",src)

 return [x_r,479-y_r],[x_b,479-y_b]

def targetDetecot(src):

 src_temp=src.copy()

 b,g,r=cv2.split(src_temp)

 ret,b = cv2.threshold(b,80,255,cv2.THRESH_BINARY)

 ret,g = cv2.threshold(g,100,255,cv2.THRESH_BINARY)

 ret,r = cv2.threshold(r,30,255,cv2.THRESH_BINARY)

 binery = r+b+g

 ret,binery = cv2.threshold(binery,50,255,cv2.THRESH_BINARY_INV)

 erotion = cv2.erode(binery,np.ones((4,4),np.uint8))

 dilation= cv2.dilate(erotion,np.ones((6,6),np.uint8))

 #cv2.imshow("binary",dilation)

3. Robot Control – Python 86

 contours, hierarchy =

cv2.findContours(dilation,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

 cv2.drawContours(src_temp, contours, -1, (150, 100, 255), 2)

 tips_x=[]

 tips_y=[]

 for contour in contours:

 area = cv2.contourArea(contour)

 if area>2000 and area<35000:

 rect = cv2.minAreaRect(contour)

 box = np.int0(cv2.boxPoints(rect))

 cv2.drawContours(src_temp, [box], 0, (0, 0, 255), 2)

 y_p=np.array([box[0][1],box[1][1],box[2][1],box[3][1]])

 y_p=np.argsort(y_p)

 slope = (box[y_p[0]][1]-box[y_p[1]][1])/(box[y_p[0]][0]-box[y_p[1]][0])

 bias = box[y_p[0]][1]-slope*box[y_p[0]][0]

 for p in contour:

 temp = slope*p[0][0]+bias-p[0][1]

 if abs(temp) < 2:

 tips_x.append(p[0][0])

 tips_y.append(p[0][1])

 tips=np.empty(2)

 if len(tips_x) is not 0 and len(tips_y) is not 0:

 tips = np.int0(np.array([np.mean(tips_x),np.mean(tips_y)]))

3. Robot Control – Python 87

 #print("Tips",tips)

 cv2.circle(src_temp,(tips[0],tips[1]), 3, (0, 255, 255), 2)

 cv2.circle(src,(tips[0],tips[1]), 3, (0, 100, 255), 2)

 x_b=0

 y_b=0

 binery_b=b-r

 ret,binery_b = cv2.threshold(binery_b,50,255,cv2.THRESH_BINARY)

 erotion_b = cv2.erode(binery_b,np.ones((6,6),np.uint8))

 dilation_b= cv2.dilate(erotion_b,np.ones((6,6),np.uint8))

 #cv2.imshow("blue",dilation_b)

 contours_b, hierarchy_b =

cv2.findContours(dilation_b,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

 for contour in contours_b:

 area = cv2.contourArea(contour)

 if area>300 and area<2000:

 rect = cv2.minAreaRect(contour)

 box = cv2.boxPoints(rect)

 x_b=np.int0((box[0][0]+box[1][0]+box[2][0]+box[3][0])/4)

 y_b=np.int0((box[0][1]+box[1][1]+box[2][1]+box[3][1])/4)

 cv2.drawContours(src_temp, [np.int0(cv2.boxPoints(rect))], 0, (255, 0, 0), 2)

 cv2.circle(src_temp, (x_b, y_b), 3, (0, 255, 255), 2)

 cv2.circle(src, (x_b, y_b), 3, (255, 100, 0), 2)

3. Robot Control – Python 88

 cv2.imshow("preview",src_temp)

 cv2.imshow("target",src)

 return [tips[0],479-tips[1]],[x_b,479-y_b]

lamda = 0.5

length = 50

robot = MicroDART.MicroDART(length)

port=serial.Serial("/dev/ttyACM0",9600,timeout=0.5)

servo_flag = False

init_flag = True

cam_name1 = "/dev/video0"

cap = cv2.VideoCapture(cam_name1)

angle_change=np.array([0.01,0.01])

angle_diff=np.array([0.001,0.002])

angle_change=angle_change+angle_diff

jac_estimate=robot.jacobian_noZ(angle_change[0],angle_change[1])

draw_position_old = robot.forward_noZ(angle_change[0],angle_change[1]) # initial position

fig,ax = plt.subplots(figsize=(8,4))

ax.set_title('Trajectory (simulation)')

ax.plot(draw_position_old[0],draw_position_old[1],'ro')

3. Robot Control – Python 89

motor_moved = False

estimate = False

changing = 0

while 1:

 ret, frame = cap.read()

 #cv2.imshow("cap", frame)

 #tip,target = targetDetector(frame)

 tip,target = targetDetecot(frame)

 # print(tip,target)

 key = cv2.waitKey(10)

 if key == ord('q'):

 break

 if key == ord('s'):

 servo_flag=True

 if key == ord('n'):

 servo_flag=False

 if key == ord('r'):

 port.write("0,0,0,0,0&".encode('utf-8'))

 if target!=[0,0] and tip!=[0,0] and init_flag is True:

 if target!=[0,0] and tip!=[0.5,478]:

 position_pre = np.array(tip)

 init_flag=False

3. Robot Control – Python 90

 if motor_moved is True and estimate is True:

 position_changed = np.array(tip)

 #changing = (position_changed-position_pre)/100

 #changing = robot.forward_noZ(angle_change[0],angle_change[1])-draw_position_old

 #jac_estimate=robot.est_jac(jac_estimate,angle_diff,changing)

 motor_moved = False

 if servo_flag is True and init_flag is not True:

 if target!=[0,0] and tip!=[0.5,478]:

 position_changed = np.array(tip)

 target_array = np.array(target)

 if estimate:

 diff_target = (target_array-position_changed)/50

 else:

 diff_target = (target_array-position_changed)/50

 print("tip:",position_changed,"-target:",target_array,"-->diff:", diff_target)

 temp=np.matmul(jac_estimate,jac_estimate.T)+lamda*np.identity(2)

 angle_diff = np.matmul(np.matmul(jac_estimate.T,np.linalg.inv(temp)),diff_target)

 angle_change=angle_change+angle_diff

 position_pre = position_changed

 if estimate is not True:

3. Robot Control – Python 91

 jac_estimate = robot.jacobian_noZ(angle_change[0],angle_change[1])

 wires = robot.wire_change(angle_change[0],angle_change[1])

 command = "%5f,%5f,%5f,%5f,%5f,&"%(wires[0],wires[1],wires[2],wires[3],wires[4])

 print("Command: ",command)

 port.write(command.encode('utf-8'))

 servo_flag=False

 motor_moved = True

 # draw

 draw_position=robot.forward_noZ(angle_change[0],angle_change[1])

 print("Forward kinamatic:",draw_position)

 ax.plot(draw_position[0],draw_position[1],'b*')

 ax.plot([draw_position_old[0],draw_position[0]],[draw_position_old[1],draw_position[1]],'g-')

 changing = draw_position-draw_position_old

 print("Change:",changing)

 jac_estimate=robot.est_jac(jac_estimate,angle_diff,changing)

 draw_position_old=draw_position

 plt.draw()

 plt.pause(0.001)

port.close()

cap.release()

cv2.destroyAllWindows()

4. Data recording 92

4. Data recording

4.1 Catheter_record.py

import cv2

import numpy as np

import MicroDART

import serial

from matplotlib import pyplot as plt

import csv

def targetDetecot(src):

 src_temp=src.copy()

 b,g,r=cv2.split(src_temp)

 ret,b = cv2.threshold(b,80,255,cv2.THRESH_BINARY)

 ret,g = cv2.threshold(g,100,255,cv2.THRESH_BINARY)

 ret,r = cv2.threshold(r,30,255,cv2.THRESH_BINARY)

 binery = r+b+g

 ret,binery = cv2.threshold(binery,50,255,cv2.THRESH_BINARY_INV)

 erotion = cv2.erode(binery,np.ones((4,4),np.uint8))

 dilation= cv2.dilate(erotion,np.ones((6,6),np.uint8))

 #cv2.imshow("binary",dilation)

 contours, hierarchy =

cv2.findContours(dilation,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

4. Data recording 93

 cv2.drawContours(src_temp, contours, -1, (150, 100, 255), 2)

 tips_x=[]

 tips_y=[]

 for contour in contours:

 area = cv2.contourArea(contour)

 if area>2000 and area<28000:

 rect = cv2.minAreaRect(contour)

 box = np.int0(cv2.boxPoints(rect))

 cv2.drawContours(src_temp, [box], 0, (0, 0, 255), 2)

 y_p=np.array([box[0][1],box[1][1],box[2][1],box[3][1]])

 y_p=np.argsort(y_p)

 slope = (box[y_p[0]][1]-box[y_p[1]][1])/(box[y_p[0]][0]-box[y_p[1]][0])

 bias = box[y_p[0]][1]-slope*box[y_p[0]][0]

 for p in contour:

 temp = slope*p[0][0]+bias-p[0][1]

 if abs(temp) < 2:

 tips_x.append(p[0][0])

 tips_y.append(p[0][1])

 tips=np.empty(2)

 if len(tips_x) is not 0 and len(tips_y) is not 0:

 tips = np.int0(np.array([np.mean(tips_x),np.mean(tips_y)]))

 #print("Tips",tips)

4. Data recording 94

 cv2.circle(src_temp,(tips[0],tips[1]), 3, (0, 255, 255), 2)

 cv2.circle(src,(tips[0],tips[1]), 3, (0, 100, 255), 2)

 x_b=0

 y_b=0

 binery_b=b-r

 ret,binery_b = cv2.threshold(binery_b,50,255,cv2.THRESH_BINARY)

 erotion_b = cv2.erode(binery_b,np.ones((6,6),np.uint8))

 dilation_b= cv2.dilate(erotion_b,np.ones((6,6),np.uint8))

 #cv2.imshow("blue",dilation_b)

 contours_b, hierarchy_b =

cv2.findContours(dilation_b,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

 for contour in contours_b:

 area = cv2.contourArea(contour)

 if area>500 and area<2000:

 rect = cv2.minAreaRect(contour)

 box = cv2.boxPoints(rect)

 x_b=np.int0((box[0][0]+box[1][0]+box[2][0]+box[3][0])/4)

 y_b=np.int0((box[0][1]+box[1][1]+box[2][1]+box[3][1])/4)

 cv2.drawContours(src_temp, [np.int0(cv2.boxPoints(rect))], 0, (255, 0, 0), 2)

 cv2.circle(src_temp, (x_b, y_b), 3, (0, 255, 255), 2)

 cv2.circle(src, (x_b, y_b), 3, (255, 100, 0), 2)

4. Data recording 95

 cv2.imshow("preview",src_temp)

 cv2.imshow("target",src)

 return [tips[0],479-tips[1]],[x_b,479-y_b]

cam_name1 = "/dev/video0"

cap = cv2.VideoCapture(cam_name1)

fig, (ax,ax2) = plt.subplots(1,2,figsize=(12,4))

with open('data2.csv','w',newline='') as f_csv:

 while(1):

 ret, frame = cap.read()

 cv2.imshow("cap", frame)

 tip,target = targetDetecot(frame)

 cv2.waitKey(100)

 f_writer = csv.writer(f_csv)

 f_writer.writerow(tip)

	MingcongChen_19007740_HongbinLiu_FinalReport_2019-20
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of tables
	Nomenclature
	Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Background
	1.4 Project Outline

	Design
	2.1 System Design
	2.1.1 Flexible Manipulator Design
	2.1.2 Actuation
	2.1.3 Communication

	2.2 Image Sensing
	2.3 Forward Kinematics
	2.4 Inverse kinematics
	2.5 Jacobian Matrix Update
	2.6 Visual Servoing

	Experiment and Results
	3.1 Forward kinematics
	3.2 Inverse kinematics
	3.3 Estimated Jacobian Matrix
	3.4 Visual Servoing
	3.4.1 Damped Least Squares with Differential Jacobian Matrix
	3.4.2 Damped Least Squares with Estimated Jacobian Matrix
	3.4.3 Contact Location Estimation

	Discussion
	4.1 System design
	4.1.1 Flexible Manipulator Design
	4.1.2 Actuation
	4.1.3 Communication

	4.2 Image Sensing
	4.3 Forward Kinematics
	4.4 Inverse Kinematics
	4.5 Visual Servoing
	4.6 Applicability and further development
	4.7 Conclusion

	Reference
	Appendix
	1. Arduino
	2. Simulation Code - MATLAB
	3. Robot Control – Python
	4. Data recording

